Fusion of atomic W-like states in cavity QED systems
- URL: http://arxiv.org/abs/2407.07626v1
- Date: Wed, 10 Jul 2024 13:01:05 GMT
- Title: Fusion of atomic W-like states in cavity QED systems
- Authors: Cheng-Yun Ding, Wan-Fang Liu, Li-Hua Zhang,
- Abstract summary: We propose two kinds of novel and efficient fusion schemes for atomic W-like states based on the large-detuning interactions between several atoms and a single-mode cavity field.
Although the fusion process of our scheme involves particle loss, the corresponding success probability is high and fixed, which may induce high fusion efficiency.
- Score: 5.45511111377454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is well-known that maximally entangled GHZ states can achieve perfect teleportation and superdense coding, whereas maximally entangled W states cannot. However, it has been demonstrated that there exists a special class of non-maximally entangled W states, called as \textit{W-like} states, which can overcome this limitation. Therefore, it is of great significance to prepare such W-like states for efficient quantum communication. Here, we propose two kinds of novel and efficient fusion schemes for atomic W-like states based on the large-detuning interactions between several atoms and a single-mode cavity field, with which large-scale atomic $|\mathcal{W}_{N+M-1}\rangle$ and $|\mathcal{W}_{N+M+T-2}\rangle$ states can be prepared, respectively, from two small-scale atomic $|\mathcal{W}_{N}\rangle$ and $|\mathcal{W}_{M}\rangle$ states and three small-scale atomic $|\mathcal{W}_{N}\rangle$, $|\mathcal{W}_{M}\rangle$ and $|\mathcal{W}_{T}\rangle$ states, by detecting the states of one or two of the fused atoms. Particularly, although the fusion process of our scheme involves particle loss, the corresponding success probability is high and fixed, which may induce high fusion efficiency. Furthermore, through the investigation of the resource cost and feasibility analysis, our protocol is simple and feasible under the current experimental conditions. All these suggest that it provides an alternative strategy for preparing large-scale atomic W-like states for perfect teleportation and superdense coding.
Related papers
- Optimizing random local Hamiltonians by dissipation [44.99833362998488]
We prove that a simplified quantum Gibbs sampling algorithm achieves a $Omega(frac1k)$-fraction approximation of the optimum.
Our results suggest that finding low-energy states for sparsified (quasi)local spin and fermionic models is quantumly easy but classically nontrivial.
arXiv Detail & Related papers (2024-11-04T20:21:16Z) - High--N00N State Generation: N00N State Output of Floquet Engineering [0.0]
The N00N state is a bipartite maximally entangled state crucial in quantum metrology applications.
We show that this state can be generated as a superposition of modes of quantum light, a combination of light and motion, or a superposition of two spin ensembles.
The approach discussed here can generate mesoscopic and macroscopic entangled states, such as entangled coherent and squeezed states.
arXiv Detail & Related papers (2023-12-30T01:27:06Z) - Pseudorandom and Pseudoentangled States from Subset States [49.74460522523316]
A subset state with respect to $S$, a subset of the computational basis, is [ frac1sqrt|S|sum_iin S |irangle.
We show that for any fixed subset size $|S|=s$ such that $s = 2n/omega(mathrmpoly(n))$ and $s=omega(mathrmpoly(n))$, a random subset state is information-theoretically indistinguishable from a Haar random state even provided
arXiv Detail & Related papers (2023-12-23T15:52:46Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
A candidate application for quantum computers is to simulate the low-temperature properties of quantum systems.
This paper shows that, for most random Hamiltonians, the maximally mixed state is a sufficiently good trial state.
Phase estimation efficiently prepares states with energy arbitrarily close to the ground energy.
arXiv Detail & Related papers (2023-02-07T10:57:36Z) - Beyond transcoherent states: Field states for effecting optimal coherent
rotations on single or multiple qubits [0.0]
We introduce field states that transform an atom from its ground or excited state to any point on the Bloch sphere without residual atom-field entanglement.
The best strong pulses for carrying out rotations by angle $theta$ are are squeezed in photon-number variance by a factor of $rmsinctheta$.
We extend these investigations to fields interacting with multiple atoms simultaneously, discovering once again that number squeezing by $tfracpi2$ is optimal for enacting $tfracpi2$ pulses on all of the atoms simultaneously.
arXiv Detail & Related papers (2022-10-21T18:00:05Z) - Coherent dynamics in a five-level atomic system [62.997667081978825]
coherent control of multi-partite quantum systems is one of the central prerequisites in quantum information processing.
Laser-cooled neon atoms in the metastable state of state $1s2 2s2 2p5 3s$ are prepared.
Coherence properties of the prepared states are studied using Ramsey and spin echo measurements.
arXiv Detail & Related papers (2022-10-21T11:44:15Z) - Concentration bounds for quantum states and limitations on the QAOA from
polynomial approximations [17.209060627291315]
We prove concentration for the following classes of quantum states: (i) output states of shallow quantum circuits, answering an open question from [DPMRF22]; (ii) injective matrix product states, answering an open question from [DPMRF22]; (iii) output states of dense Hamiltonian evolution, i.e. states of the form $eiota H(p) cdots eiota H(1) |psirangle for any $n$-qubit product state $|psirangle$, where each $H(
arXiv Detail & Related papers (2022-09-06T18:00:02Z) - Efficiently preparing Schr\"odinger's cat, fractons and non-Abelian
topological order in quantum devices [0.0]
Long-range entangled quantum states -- like cat states and topological order -- are key for quantum metrology and information purposes.
We propose how to scalably prepare a broad range of long-range entangled states with the use of existing experimental platforms.
Remarkably, this protocol can prepare the 1D Greenberger-Horne-Zeilinger (GHZ) 'cat' state and 2D toric code with fidelity per site exceeding $0.9999$.
arXiv Detail & Related papers (2021-12-02T18:58:34Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
We establish quantum features of an atomic soliton Josephson junction (SJJ) device.
We show that the SJJ-model in quantum domain exhibits unusual features due to its effective nonlinear strength proportional to the square of total particle number.
We have shown that the obtained quantum state is more resistant to few particle losses from the condensates if tiny components of entangled Fock states are present.
arXiv Detail & Related papers (2020-11-26T09:26:19Z) - Transcoherent states: Optical states for maximal generation of atomic
coherence [0.0]
We show that there are quantum states of light that generate coherent atomic states perfectly, with no residual atom-field entanglement.
These states can be found for arbitrarily short times and approach slightly-number-squeezed $tfracpi2$ pulses in the limit of large intensities.
These states can be repeatedly used as "quantum catalysts" to successfully generate coherent atomic states with high probability.
arXiv Detail & Related papers (2020-08-17T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.