High-fidelity entanglement and coherent multi-qubit mapping in an atom array
- URL: http://arxiv.org/abs/2506.13632v1
- Date: Mon, 16 Jun 2025 15:58:53 GMT
- Title: High-fidelity entanglement and coherent multi-qubit mapping in an atom array
- Authors: Aruku Senoo, Alexander Baumgärtner, Joanna W. Lis, Gaurav M. Vaidya, Zhongda Zeng, Giuliano Giudici, Hannes Pichler, Adam M. Kaufman,
- Abstract summary: We show the creation and coherent mapping of entangled quantum states across multiple qubits in Ytterbium-171 tweezer arrays.<n>Results establish a versatile architecture that advances multiple fields of quantum information science while also establishing bridges between them.
- Score: 34.82692226532414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neutral atoms in optical tweezer arrays possess broad applicability for quantum information science, in computing, simulation, and metrology. Among atomic species, Ytterbium-171 is unique as it hosts multiple qubits, each of which is impactful for these distinct applications. Consequently, this atom is an ideal candidate to bridge multiple disciplines, which, more broadly, has been an increasingly effective strategy within the field of quantum science. Realizing the full potential of this synergy requires high-fidelity generation and transfer of many-particle entanglement between these distinct qubit degrees of freedom, and thus between these distinct applications. Here we demonstrate the creation and coherent mapping of entangled quantum states across multiple qubits in Ytterbium-171 tweezer arrays. We map entangled states onto the optical clock qubit from the nuclear spin qubit or the Rydberg qubit. We coherently transfer up to 20 atoms of a $Z_2$-ordered Greenberger-Horne-Zeilinger (GHZ) state from the interacting Rydberg manifold to the metastable nuclear spin manifold. The many-body state is generated via a novel disorder-robust pulse in a two-dimensional ladder geometry. We further find that clock-qubit-based spin detection applied to Rydberg and nuclear spin qubits facilitates atom-loss-detectable qubit measurements and $>90\%$ Rydberg decay detection. This enables mid-circuit and delayed erasure detection, yielding an error-detected two-qubit gate fidelity of $99.78(4)\%$ in the metastable qubits as well as enhanced GHZ state fidelities in analog preparation. These results establish a versatile architecture that advances multiple fields of quantum information science while also establishing bridges between them.
Related papers
- Multi-qubit Rydberg gates between distant atoms [0.0]
We propose an efficient protocol to realize multi-qubit gates in arrays of neutral atoms.<n>We apply a global laser pulse to transfer the atoms to a Rydberg state with strong blockade interaction.<n>The number of Rydberg excitations, and thereby the parity of the resulting state, depends on the multiqubit input state.
arXiv Detail & Related papers (2025-07-22T13:58:39Z) - Multi-Photon Quantum Rabi Models with Center-of-Mass Motion [45.73541813564926]
We introduce a rigorous, second-quantized framework for describing multi-$Lambda$-atoms in a cavity.<n>A key feature of our approach is the systematic application of a Hamiltonian averaging theory to the atomic field operators.<n>A significant finding is the emergence of a particle-particle interaction mediated by ancillary states.
arXiv Detail & Related papers (2025-07-07T09:50:48Z) - An 11-qubit atom processor in silicon [0.7454461126580372]
Phosphorus atoms in silicon are an outstanding platform for quantum computing as their nuclear spins exhibit coherence time over seconds.<n>Here, we demonstrate integration with a fully controlled 11-qubit atom processor composed of two multi-nuclear spin registers.<n>We verify the efficient all-to-all connectivity by preparing both local and non-local Bell states with a record state fidelity beyond 99%.
arXiv Detail & Related papers (2025-06-04T04:31:08Z) - Fast entangling gates for Rydberg atoms via resonant dipole-dipole interaction [0.0]
We introduce a novel scheme for entangling gates using four atomic levels per atom: a ground state qubit and two Rydberg states.
We show that this interaction can mediate controlled-Z gates that are faster and less sensitive to Rydberg decay than state-of-the-art Rydberg gates.
arXiv Detail & Related papers (2024-11-07T19:00:08Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - High-fidelity parallel entangling gates on a neutral atom quantum
computer [41.74498230885008]
We report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel.
These advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations.
arXiv Detail & Related papers (2023-04-11T18:00:04Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Quantum Computing with Circular Rydberg Atoms [0.0]
We propose a novel approach to Rydberg atom arrays using long-lived circular Rydberg states in optical traps.
We project that arrays of hundreds of circular Rydberg atoms with two-qubit gate errors around $10-5$ can be realized using current technology.
arXiv Detail & Related papers (2021-03-23T18:00:00Z) - Programmable quantum simulation of 2D antiferromagnets with hundreds of
Rydberg atoms [43.55994393060723]
Quantum simulation using synthetic systems is a promising route to solve outstanding quantum many-body problems.
Here, we use programmable arrays of individual atoms trapped in optical tweezers to implement an iconic many-body problem.
We push this platform to an unprecedented regime with up to 196 atoms manipulated with high fidelity.
arXiv Detail & Related papers (2020-12-22T19:00:00Z) - Universal quantum computation and quantum error correction with
ultracold atomic mixtures [47.187609203210705]
We propose a mixture of two ultracold atomic species as a platform for universal quantum computation with long-range entangling gates.
One atomic species realizes localized collective spins of tunable length, which form the fundamental unit of information.
We discuss a finite-dimensional version of the Gottesman-Kitaev-Preskill code to protect quantum information encoded in the collective spins.
arXiv Detail & Related papers (2020-10-29T20:17:14Z) - Optimized Geometric Quantum Computation with mesoscopic ensemble of
Rydberg Atoms [1.3124513975412255]
We propose a nonadiabatic non-Abelian geometric quantum operation scheme to realize universal quantum computation with Rydberg atoms.
We demonstrate theoretically that both the single qubit and two-qubit quantum gates can achieve high fidelities around or above 99.9% in ideal situations.
Our numerical simulations show that the average fidelity could be 99.98% for single ensemble qubit gate and 99.94% for two-qubit gate even when the Rabi frequency of the gate laser acquires 10% fluctuations.
arXiv Detail & Related papers (2020-09-08T13:11:22Z) - Phonon-mediated spin-spin interactions between trapped Rydberg atoms [0.0]
We investigate the possibility of creating phonon-mediated spin-spin interactions between neutral atoms trapped in optical tweezers.
We show that these can be used to mediate effective spin-spin interactions or quantum logic gates between the atoms in analogy to schemes employed in trapped ions.
We find arbitrarily high fidelity for the coherent time evolution of the two-atom state even at non-zero temperature.
arXiv Detail & Related papers (2020-08-31T14:05:51Z) - High-Fidelity Entanglement and Detection of Alkaline-Earth Rydberg Atoms [48.093689931392866]
Controlled two-qubit entanglement generation has so far been limited to alkali species.
We demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms.
We find fidelities for Rydberg state detection, single-atom Rabi operations, and two-atom entanglement surpassing previously published values.
arXiv Detail & Related papers (2020-01-13T18:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.