論文の概要: Explaining Graph Neural Networks for Node Similarity on Graphs
- arxiv url: http://arxiv.org/abs/2407.07639v1
- Date: Wed, 10 Jul 2024 13:20:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 16:32:05.843584
- Title: Explaining Graph Neural Networks for Node Similarity on Graphs
- Title(参考訳): グラフ上のノード類似性のためのグラフニューラルネットワークの解説
- Authors: Daniel Daza, Cuong Xuan Chu, Trung-Kien Tran, Daria Stepanova, Michael Cochez, Paul Groth,
- Abstract要約: ノード類似性を計算するためのGNNベースの手法を,説明とともに拡張する方法について検討する。
具体的には、GNNにおける説明に対する2つのアプローチの性能を評価する。
MIの説明とは異なり、勾配に基づく説明は3つの望ましい性質を持つ。
- 参考スコア(独自算出の注目度): 9.14795454299225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Similarity search is a fundamental task for exploiting information in various applications dealing with graph data, such as citation networks or knowledge graphs. While this task has been intensively approached from heuristics to graph embeddings and graph neural networks (GNNs), providing explanations for similarity has received less attention. In this work we are concerned with explainable similarity search over graphs, by investigating how GNN-based methods for computing node similarities can be augmented with explanations. Specifically, we evaluate the performance of two prominent approaches towards explanations in GNNs, based on the concepts of mutual information (MI), and gradient-based explanations (GB). We discuss their suitability and empirically validate the properties of their explanations over different popular graph benchmarks. We find that unlike MI explanations, gradient-based explanations have three desirable properties. First, they are actionable: selecting inputs depending on them results in predictable changes in similarity scores. Second, they are consistent: the effect of selecting certain inputs overlaps very little with the effect of discarding them. Third, they can be pruned significantly to obtain sparse explanations that retain the effect on similarity scores.
- Abstract(参考訳): 類似性検索は、引用ネットワークや知識グラフなどのグラフデータを扱う様々なアプリケーションにおいて、情報を利用するための基本的なタスクである。
このタスクはヒューリスティックスからグラフ埋め込みやグラフニューラルネットワーク(GNN)に強くアプローチされているが、類似性の説明はそれほど注目されていない。
本研究は,GNNに基づくノード類似性計算手法を,説明とともに拡張する方法について検討することによって,グラフ上の説明可能な類似性探索について検討する。
具体的には、相互情報(MI)の概念と勾配に基づく説明(GB)に基づいて、GNNにおける説明に対する2つの顕著なアプローチのパフォーマンスを評価する。
我々は、それらの適合性を議論し、それらの説明の特性を、異なる人気のあるグラフベンチマークで実証的に検証する。
MIの説明とは異なり、勾配に基づく説明は3つの望ましい性質を持つ。
入力に応じて入力を選択すると、類似度スコアの予測可能な変更が発生します。
第二に、それらは一貫したものであり、ある入力を選択する効果は、それらを捨てる効果とほとんど重ならない。
第3に、類似度スコアへの影響を保ったスパースな説明を得るために、それらを著しく刈り取ることができる。
関連論文リスト
- View-based Explanations for Graph Neural Networks [27.19300566616961]
本稿では,表現のためのグラフビューを生成する新しいパラダイムであるGVEXを提案する。
この戦略は近似比が1/2であることを示す。
第2のアルゴリズムは、インプットノードストリームへの単一パスをバッチで実行し、説明ビューを漸進的に維持する。
論文 参考訳(メタデータ) (2024-01-04T06:20:24Z) - Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph
Matching [68.35685422301613]
そこで我々はMatchExplainerと呼ばれる新しい非パラメトリックな部分グラフマッチングフレームワークを提案し、説明的部分グラフを探索する。
ターゲットグラフと他のインスタンスを結合し、ノードに対応する距離を最小化することで最も重要な結合部分構造を識別する。
合成および実世界のデータセットの実験は、最先端のパラメトリックベースラインをかなりのマージンで上回り、MatchExplainerの有効性を示す。
論文 参考訳(メタデータ) (2023-01-07T05:14:45Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
自己教師付きグラフ類似性学習のためのコントラストグラフマッチングネットワーク(CGMN)を提案する。
我々は,効率的なノード表現学習のために,クロスビューインタラクションとクロスグラフインタラクションという2つの戦略を用いる。
我々はノード表現をグラフ類似性計算のためのプール演算によりグラフレベル表現に変換する。
論文 参考訳(メタデータ) (2022-05-30T13:20:26Z) - Reinforced Causal Explainer for Graph Neural Networks [112.57265240212001]
グラフニューラルネットワーク(GNN)の探索には説明可能性が不可欠である
我々は強化学習エージェントReinforced Causal Explainer (RC-Explainer)を提案する。
RC-Explainerは忠実で簡潔な説明を生成し、グラフを見えなくするより優れたパワーを持つ。
論文 参考訳(メタデータ) (2022-04-23T09:13:25Z) - Towards Self-Explainable Graph Neural Network [24.18369781999988]
グラフニューラルネットワーク(GNN)は、ディープニューラルネットワークをグラフ構造化データに一般化する。
GNNには説明責任がないため、モデルの透明性を求めるシナリオでは採用が制限される。
そこで本稿では,各未ラベルノードに対して$K$-nearestラベル付きノードを探索し,説明可能なノード分類を提案する。
論文 参考訳(メタデータ) (2021-08-26T22:45:11Z) - On Explainability of Graph Neural Networks via Subgraph Explorations [48.56936527708657]
本稿では,グラフニューラルネットワーク(GNN)を説明するための新しい手法,SubgraphXを提案する。
我々の研究は,GNNのサブグラフを明示的に識別する最初の試みである。
論文 参考訳(メタデータ) (2021-02-09T22:12:26Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
グラフニューラルネットワーク(GNN)のためのパラメータ化説明器PGExplainerを提案する。
既存の研究と比較すると、PGExplainerはより優れた一般化能力を持ち、インダクティブな設定で容易に利用することができる。
合成データセットと実生活データセットの両方の実験では、グラフ分類の説明に関するAUCの相対的な改善が24.7%まで高い競争性能を示した。
論文 参考訳(メタデータ) (2020-11-09T17:15:03Z) - Inverse Graph Identification: Can We Identify Node Labels Given Graph
Labels? [89.13567439679709]
グラフ識別(GI)は、グラフ学習において長い間研究されており、特定の応用において不可欠である。
本稿では,逆グラフ識別(Inverse Graph Identification, IGI)と呼ばれる新しい問題を定義する。
本稿では,グラフアテンションネットワーク(GAT)を用いたノードレベルのメッセージパッシング処理を,GIのプロトコルの下でシンプルかつ効果的に行う方法を提案する。
論文 参考訳(メタデータ) (2020-07-12T12:06:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。