Exploiting Scale-Variant Attention for Segmenting Small Medical Objects
- URL: http://arxiv.org/abs/2407.07720v4
- Date: Mon, 5 Aug 2024 07:56:29 GMT
- Title: Exploiting Scale-Variant Attention for Segmenting Small Medical Objects
- Authors: Wei Dai, Rui Liu, Zixuan Wu, Tianyi Wu, Min Wang, Junxian Zhou, Yixuan Yuan, Jun Liu,
- Abstract summary: We propose a scale-variant attention-based network (SvANet) for accurately segmenting small-scale objects in medical images.
SvANet achieves 96.12%, 96.11%, 89.79%, 84.15%, 80.25%, 73.05%, and 72.58% in mean Dice coefficient for segmenting kidney tumors, skin lesions, hepatic tumors, polyps, surgical cells, retinal vasculatures, and sperms.
- Score: 33.89429273976198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early detection and accurate diagnosis can predict the risk of malignant disease transformation, thereby increasing the probability of effective treatment. Identifying mild syndrome with small pathological regions serves as an ominous warning and is fundamental in the early diagnosis of diseases. While deep learning algorithms, particularly convolutional neural networks (CNNs), have shown promise in segmenting medical objects, analyzing small areas in medical images remains challenging. This difficulty arises due to information losses and compression defects from convolution and pooling operations in CNNs, which become more pronounced as the network deepens, especially for small medical objects. To address these challenges, we propose a novel scale-variant attention-based network (SvANet) for accurately segmenting small-scale objects in medical images. The SvANet consists of scale-variant attention, cross-scale guidance, Monte Carlo attention, and vision transformer, which incorporates cross-scale features and alleviates compression artifacts for enhancing the discrimination of small medical objects. Quantitative experimental results demonstrate the superior performance of SvANet, achieving 96.12%, 96.11%, 89.79%, 84.15%, 80.25%, 73.05%, and 72.58% in mean Dice coefficient for segmenting kidney tumors, skin lesions, hepatic tumors, polyps, surgical excision cells, retinal vasculatures, and sperms, which occupy less than 1% of the image areas in KiTS23, ISIC 2018, ATLAS, PolypGen, TissueNet, FIVES, and SpermHealth datasets, respectively.
Related papers
- Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
Multimodal large language models (MLLMs) have recently transformed many domains, significantly affecting the medical field. Notably, Gemini-Vision-series (Gemini) and GPT-4-series (GPT-4) models have epitomized a paradigm shift in Artificial General Intelligence for computer vision.
This study evaluated the performance of the Gemini, GPT-4, and 4 popular large models for an exhaustive evaluation across 14 medical imaging datasets.
arXiv Detail & Related papers (2024-07-08T09:08:42Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Gravity Network for end-to-end small lesion detection [50.38534263407915]
This paper introduces a novel one-stage end-to-end detector specifically designed to detect small lesions in medical images.
Precise localization of small lesions presents challenges due to their appearance and the diverse contextual backgrounds in which they are found.
We refer to this new architecture as GravityNet, and the novel anchors as gravity points since they appear to be "attracted" by the lesions.
arXiv Detail & Related papers (2023-09-22T14:02:22Z) - Channel Attention Separable Convolution Network for Skin Lesion
Segmentation [2.8636163472272576]
We propose a novel network called Channel Attention Separable Convolution Network (CASCN) for skin lesions segmentation.
CASCN achieves state-of-the-art performance on the PH2 dataset with Dice coefficient similarity of 0.9461 and accuracy of 0.9645.
arXiv Detail & Related papers (2023-09-03T04:20:28Z) - Enhancing Medical Image Segmentation: Optimizing Cross-Entropy Weights
and Post-Processing with Autoencoders [10.59457299493644]
In this paper, we present a deep-learning approach tailored for Medical image segmentation.
Our proposed method outperforms the current state-of-the-art techniques by an average of 12.26% for U-Net and 12.04% for U-Net++ across the ResNet family of encoders on the dermatomyositis dataset.
arXiv Detail & Related papers (2023-08-21T06:09:00Z) - Segmentation of Lungs COVID Infected Regions by Attention Mechanism and
Synthetic Data [10.457311689444769]
This research proposes a method for segmenting infected lung regions in a CT image.
A convolutional neural network with an attention mechanism is used to detect infected areas with complex patterns.
A generative adversarial network generates synthetic images for data augmentation and expansion of small available datasets.
arXiv Detail & Related papers (2021-08-19T20:15:47Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Detecting Scatteredly-Distributed, Small, andCritically Important
Objects in 3D OncologyImaging via Decision Stratification [23.075722503902714]
We focus on the detection and segmentation of oncology-significant (or suspicious cancer metastasized) lymph nodes.
We propose a divide-and-conquer decision stratification approach that divides OSLNs into tumor-proximal and tumor-distal categories.
We present a novel global-local network (GLNet) that combines high-level lesion characteristics with features learned from localized 3D image patches.
arXiv Detail & Related papers (2020-05-27T23:12:11Z) - ElixirNet: Relation-aware Network Architecture Adaptation for Medical
Lesion Detection [90.13718478362337]
We introduce a novel ElixirNet that includes three components: 1) TruncatedRPN balances positive and negative data for false positive reduction; 2) Auto-lesion Block is automatically customized for medical images to incorporate relation-aware operations among region proposals; and 3) Relation transfer module incorporates the semantic relationship.
Experiments on DeepLesion and Kits19 prove the effectiveness of ElixirNet, achieving improvement of both sensitivity and precision over FPN with fewer parameters.
arXiv Detail & Related papers (2020-03-03T05:29:49Z) - Weakly-Supervised Lesion Segmentation on CT Scans using Co-Segmentation [18.58056402884405]
Lesion segmentation on computed tomography (CT) scans is an important step for precisely monitoring changes in lesion/tumor growth.
Current practices rely on an imprecise substitute called response evaluation criteria in solid tumors.
This paper proposes a convolutional neural network based weakly-supervised lesion segmentation method.
arXiv Detail & Related papers (2020-01-23T15:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.