Weakly-Supervised Lesion Segmentation on CT Scans using Co-Segmentation
- URL: http://arxiv.org/abs/2001.08590v1
- Date: Thu, 23 Jan 2020 15:15:53 GMT
- Title: Weakly-Supervised Lesion Segmentation on CT Scans using Co-Segmentation
- Authors: Vatsal Agarwal, Youbao Tang, Jing Xiao, Ronald M. Summers
- Abstract summary: Lesion segmentation on computed tomography (CT) scans is an important step for precisely monitoring changes in lesion/tumor growth.
Current practices rely on an imprecise substitute called response evaluation criteria in solid tumors.
This paper proposes a convolutional neural network based weakly-supervised lesion segmentation method.
- Score: 18.58056402884405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lesion segmentation on computed tomography (CT) scans is an important step
for precisely monitoring changes in lesion/tumor growth. This task, however, is
very challenging since manual segmentation is prohibitively time-consuming,
expensive, and requires professional knowledge. Current practices rely on an
imprecise substitute called response evaluation criteria in solid tumors
(RECIST). Although these markers lack detailed information about the lesion
regions, they are commonly found in hospitals' picture archiving and
communication systems (PACS). Thus, these markers have the potential to serve
as a powerful source of weak-supervision for 2D lesion segmentation. To
approach this problem, this paper proposes a convolutional neural network (CNN)
based weakly-supervised lesion segmentation method, which first generates the
initial lesion masks from the RECIST measurements and then utilizes
co-segmentation to leverage lesion similarities and refine the initial masks.
In this work, an attention-based co-segmentation model is adopted due to its
ability to learn more discriminative features from a pair of images.
Experimental results on the NIH DeepLesion dataset demonstrate that the
proposed co-segmentation approach significantly improves lesion segmentation
performance, e.g the Dice score increases about 4.0% (from 85.8% to 89.8%).
Related papers
- An Attention Based Pipeline for Identifying Pre-Cancer Lesions in Head and Neck Clinical Images [1.0957311485487375]
Head and neck cancer is diagnosed in specialist centres after a surgical biopsy, but there is a potential for these to be missed leading to delayed diagnosis.
We present an attention based pipeline that identifies suspected lesions, segments, and classifies them as non-dysplastic, dysplastic and cancerous lesions.
arXiv Detail & Related papers (2024-05-03T09:02:17Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Generative Adversarial Networks for Weakly Supervised Generation and Evaluation of Brain Tumor Segmentations on MR Images [0.0]
This work presents a weakly supervised approach to segment anomalies in 2D magnetic resonance images.
We train a generative adversarial network (GAN) that converts cancerous images to healthy variants.
Non-cancerous variants can also be used to evaluate the segmentations in a weakly supervised fashion.
arXiv Detail & Related papers (2022-11-10T00:04:46Z) - Weakly-Supervised Universal Lesion Segmentation with Regional Level Set
Loss [16.80758525711538]
We present a novel weakly-supervised universal lesion segmentation method based on the High-Resolution Network (HRNet)
AHRNet provides advanced high-resolution deep image features by involving a decoder, dual-attention and scale attention mechanisms.
Our method achieves the best performance on the publicly large-scale DeepLesion dataset and a hold-out test set.
arXiv Detail & Related papers (2021-05-03T23:33:37Z) - Multiple Sclerosis Lesion Activity Segmentation with Attention-Guided
Two-Path CNNs [49.32653090178743]
convolutional neural networks (CNNs) are studied for lesion activity segmentation from two time points.
CNNs are designed and evaluated that combine the information from two points in different ways.
It is demonstrated that deep learning-based methods outperform classic approaches.
arXiv Detail & Related papers (2020-08-05T08:49:20Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z) - Weakly Supervised Lesion Co-segmentation on CT Scans [18.58056402884405]
We propose a weakly-supervised co-segmentation model that first generates pseudo-masks from the RECIST slices.
We then use these as training labels for an attention-based convolutional neural network capable of segmenting common lesions from a pair of CT scans.
arXiv Detail & Related papers (2020-01-24T19:39:33Z) - Spinal Metastases Segmentation in MR Imaging using Deep Convolutional
Neural Networks [0.0]
This study's objective was to segment spinal metastases in diagnostic MR images using a deep learning-based approach.
We used a U-Net like architecture trained with 40 clinical cases including both, lytic and sclerotic lesion types and various MR sequences.
Compared to expertly annotated lesion segmentations, the experiments yielded promising results with average Dice scores up to 77.6% and mean sensitivity rates up to 78.9%.
arXiv Detail & Related papers (2020-01-08T10:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.