WorldAPIs: The World Is Worth How Many APIs? A Thought Experiment
- URL: http://arxiv.org/abs/2407.07778v1
- Date: Wed, 10 Jul 2024 15:52:44 GMT
- Title: WorldAPIs: The World Is Worth How Many APIs? A Thought Experiment
- Authors: Jiefu Ou, Arda Uzunoglu, Benjamin Van Durme, Daniel Khashabi,
- Abstract summary: We propose a framework to induce new APIs by grounding wikiHow instruction to situated agent policies.
Inspired by recent successes in large language models (LLMs) for embodied planning, we propose a few-shot prompting to steer GPT-4.
- Score: 49.00213183302225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI systems make decisions in physical environments through primitive actions or affordances that are accessed via API calls. While deploying AI agents in the real world involves numerous high-level actions, existing embodied simulators offer a limited set of domain-salient APIs. This naturally brings up the questions: how many primitive actions (APIs) are needed for a versatile embodied agent, and what should they look like? We explore this via a thought experiment: assuming that wikiHow tutorials cover a wide variety of human-written tasks, what is the space of APIs needed to cover these instructions? We propose a framework to iteratively induce new APIs by grounding wikiHow instruction to situated agent policies. Inspired by recent successes in large language models (LLMs) for embodied planning, we propose a few-shot prompting to steer GPT-4 to generate Pythonic programs as agent policies and bootstrap a universe of APIs by 1) reusing a seed set of APIs; and then 2) fabricate new API calls when necessary. The focus of this thought experiment is on defining these APIs rather than their executability. We apply the proposed pipeline on instructions from wikiHow tutorials. On a small fraction (0.5%) of tutorials, we induce an action space of 300+ APIs necessary for capturing the rich variety of tasks in the physical world. A detailed automatic and human analysis of the induction output reveals that the proposed pipeline enables effective reuse and creation of APIs. Moreover, a manual review revealed that existing simulators support only a small subset of the induced APIs (9 of the top 50 frequent APIs), motivating the development of action-rich embodied environments.
Related papers
- Your Fix Is My Exploit: Enabling Comprehensive DL Library API Fuzzing with Large Language Models [49.214291813478695]
Deep learning (DL) libraries, widely used in AI applications, often contain vulnerabilities like overflows and use buffer-free errors.
Traditional fuzzing struggles with the complexity and API diversity of DL libraries.
We propose DFUZZ, an LLM-driven fuzzing approach for DL libraries.
arXiv Detail & Related papers (2025-01-08T07:07:22Z) - ExploraCoder: Advancing code generation for multiple unseen APIs via planning and chained exploration [70.26807758443675]
ExploraCoder is a training-free framework that empowers large language models to invoke unseen APIs in code solution.
We show that ExploraCoder significantly improves performance for models lacking prior API knowledge, achieving an absolute increase of 11.24% over niave RAG approaches and 14.07% over pretraining methods in pass@10.
arXiv Detail & Related papers (2024-12-06T19:00:15Z) - AppBench: Planning of Multiple APIs from Various APPs for Complex User Instruction [24.67142048995415]
Large Language Models (LLMs) can interact with the real world by connecting with versatile external APIs.
We introduce textttAppBench, the first benchmark to evaluate LLMs' ability to plan and execute multiple APIs from various sources.
arXiv Detail & Related papers (2024-10-10T04:03:13Z) - A Systematic Evaluation of Large Code Models in API Suggestion: When, Which, and How [53.65636914757381]
API suggestion is a critical task in modern software development.
Recent advancements in large code models (LCMs) have shown promise in the API suggestion task.
arXiv Detail & Related papers (2024-09-20T03:12:35Z) - A Solution-based LLM API-using Methodology for Academic Information Seeking [49.096714812902576]
SoAy is a solution-based LLM API-using methodology for academic information seeking.
It uses code with a solution as the reasoning method, where a solution is a pre-constructed API calling sequence.
Results show a 34.58-75.99% performance improvement compared to state-of-the-art LLM API-based baselines.
arXiv Detail & Related papers (2024-05-24T02:44:14Z) - SpeCrawler: Generating OpenAPI Specifications from API Documentation
Using Large Language Models [8.372941103284774]
SpeCrawler is a comprehensive system that generates OpenAPI Specifications from diverse API documentation.
The paper explores SpeCrawler's methodology, supported by empirical evidence and case studies.
arXiv Detail & Related papers (2024-02-18T15:33:24Z) - Exploring Behaviours of RESTful APIs in an Industrial Setting [0.43012765978447565]
We propose a set of behavioural properties, common to REST APIs, which are used to generate examples of behaviours that these APIs exhibit.
These examples can be used both (i) to further the understanding of the API and (ii) as a source of automatic test cases.
Our approach can generate examples deemed relevant for understanding the system and for a source of test generation by practitioners.
arXiv Detail & Related papers (2023-10-26T11:33:11Z) - Binding Language Models in Symbolic Languages [146.3027328556881]
Binder is a training-free neural-symbolic framework that maps the task input to a program.
In the parsing stage, Codex is able to identify the part of the task input that cannot be answerable by the original programming language.
In the execution stage, Codex can perform versatile functionalities given proper prompts in the API calls.
arXiv Detail & Related papers (2022-10-06T12:55:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.