AVCap: Leveraging Audio-Visual Features as Text Tokens for Captioning
- URL: http://arxiv.org/abs/2407.07801v2
- Date: Thu, 11 Jul 2024 02:38:14 GMT
- Title: AVCap: Leveraging Audio-Visual Features as Text Tokens for Captioning
- Authors: Jongsuk Kim, Jiwon Shin, Junmo Kim,
- Abstract summary: We propose AVCap, an Audio-Visual Captioning framework.
AVCap utilizes audio-visual features as text tokens.
Our method outperforms existing audio-visual captioning methods across all metrics.
- Score: 24.608569008975497
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, advancements in representation learning and language models have propelled Automated Captioning (AC) to new heights, enabling the generation of human-level descriptions. Leveraging these advancements, we propose AVCap, an Audio-Visual Captioning framework, a simple yet powerful baseline approach applicable to audio-visual captioning. AVCap utilizes audio-visual features as text tokens, which has many advantages not only in performance but also in the extensibility and scalability of the model. AVCap is designed around three pivotal dimensions: the exploration of optimal audio-visual encoder architectures, the adaptation of pre-trained models according to the characteristics of generated text, and the investigation into the efficacy of modality fusion in captioning. Our method outperforms existing audio-visual captioning methods across all metrics and the code is available on https://github.com/JongSuk1/AVCap
Related papers
- CLIP-VAD: Exploiting Vision-Language Models for Voice Activity Detection [2.110168344647122]
Voice Activity Detection (VAD) is the process of automatically determining whether a person is speaking and identifying the timing of their speech.
We introduce a novel approach leveraging Contrastive Language-Image Pretraining (CLIP) models.
Our approach outperforms several audio-visual methods despite its simplicity, and without requiring pre-training on extensive audio-visual datasets.
arXiv Detail & Related papers (2024-10-18T14:43:34Z) - DRCap: Decoding CLAP Latents with Retrieval-augmented Generation for Zero-shot Audio Captioning [13.601154787754046]
DRCap is a data-efficient and flexible zero-shot audio captioning system.
It requires text-only data for training and can quickly adapt to new domains without additional fine-tuning.
arXiv Detail & Related papers (2024-10-12T10:21:00Z) - Improving Text-To-Audio Models with Synthetic Captions [51.19111942748637]
We propose an audio captioning pipeline that uses an textitaudio language model to synthesize accurate and diverse captions for audio at scale.
We leverage this pipeline to produce a dataset of synthetic captions for AudioSet, named textttAF-AudioSet, and then evaluate the benefit of pre-training text-to-audio models on these synthetic captions.
arXiv Detail & Related papers (2024-06-18T00:02:15Z) - Few-shot Action Recognition with Captioning Foundation Models [61.40271046233581]
CapFSAR is a framework to exploit knowledge of multimodal models without manually annotating text.
Visual-text aggregation module based on Transformer is further designed to incorporate cross-modal-temporal complementary information.
experiments on multiple standard few-shot benchmarks demonstrate that the proposed CapFSAR performs favorably against existing methods.
arXiv Detail & Related papers (2023-10-16T07:08:39Z) - Zero-Shot Audio Captioning via Audibility Guidance [57.70351255180495]
We propose three desiderata for captioning audio -- (i) fluency of the generated text, (ii) faithfulness of the generated text to the input audio, and (iii) audibility.
Our method is a zero-shot method, i.e., we do not learn to perform captioning.
We present our results on the AudioCap dataset, demonstrating that audibility guidance significantly enhances performance compared to the baseline.
arXiv Detail & Related papers (2023-09-07T17:45:58Z) - Exploring the Role of Audio in Video Captioning [59.679122191706426]
We present an audio-visual framework, which aims to fully exploit the potential of the audio modality for captioning.
We propose new local-global fusion mechanisms to improve information exchange across audio and video.
arXiv Detail & Related papers (2023-06-21T20:54:52Z) - VATLM: Visual-Audio-Text Pre-Training with Unified Masked Prediction for
Speech Representation Learning [119.49605266839053]
We propose a unified cross-modal representation learning framework VATLM (Visual-Audio-Text Language Model)
The proposed VATLM employs a unified backbone network to model the modality-independent information.
In order to integrate these three modalities into one shared semantic space, VATLM is optimized with a masked prediction task of unified tokens.
arXiv Detail & Related papers (2022-11-21T09:10:10Z) - Injecting Semantic Concepts into End-to-End Image Captioning [61.41154537334627]
We propose a pure vision transformer-based image captioning model, dubbed as ViTCAP, in which grid representations are used without extracting the regional features.
For improved performance, we introduce a novel Concept Token Network (CTN) to predict the semantic concepts and then incorporate them into the end-to-end captioning.
In particular, the CTN is built on the basis of a vision transformer and is designed to predict the concept tokens through a classification task.
arXiv Detail & Related papers (2021-12-09T22:05:05Z) - Evaluating Off-the-Shelf Machine Listening and Natural Language Models
for Automated Audio Captioning [16.977616651315234]
A captioning system has to identify various information from the input signal and express it with natural language.
We evaluate the performance of off-the-shelf models with a Transformer-based captioning approach.
arXiv Detail & Related papers (2021-10-14T14:42:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.