Rel-A.I.: An Interaction-Centered Approach To Measuring Human-LM Reliance
- URL: http://arxiv.org/abs/2407.07950v2
- Date: Thu, 3 Oct 2024 16:54:59 GMT
- Title: Rel-A.I.: An Interaction-Centered Approach To Measuring Human-LM Reliance
- Authors: Kaitlyn Zhou, Jena D. Hwang, Xiang Ren, Nouha Dziri, Dan Jurafsky, Maarten Sap,
- Abstract summary: We study how reliance is affected by contextual features of an interaction.
We find that contextual characteristics significantly affect human reliance behavior.
Our results show that calibration and language quality alone are insufficient in evaluating the risks of human-LM interactions.
- Score: 73.19687314438133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to communicate uncertainty, risk, and limitation is crucial for the safety of large language models. However, current evaluations of these abilities rely on simple calibration, asking whether the language generated by the model matches appropriate probabilities. Instead, evaluation of this aspect of LLM communication should focus on the behaviors of their human interlocutors: how much do they rely on what the LLM says? Here we introduce an interaction-centered evaluation framework called Rel-A.I. (pronounced "rely"}) that measures whether humans rely on LLM generations. We use this framework to study how reliance is affected by contextual features of the interaction (e.g, the knowledge domain that is being discussed), or the use of greetings communicating warmth or competence (e.g., "I'm happy to help!"). We find that contextual characteristics significantly affect human reliance behavior. For example, people rely 10% more on LMs when responding to questions involving calculations and rely 30% more on LMs that are perceived as more competent. Our results show that calibration and language quality alone are insufficient in evaluating the risks of human-LM interactions, and illustrate the need to consider features of the interactional context.
Related papers
- Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
Many real dialogues are interactive, meaning an agent's utterances will influence their conversational partner, elicit information, or change their opinion.
We use this fact to rewrite and augment existing suboptimal data, and train via offline reinforcement learning (RL) an agent that outperforms both prompting and learning from unaltered human demonstrations.
Our results in a user study with real humans show that our approach greatly outperforms existing state-of-the-art dialogue agents.
arXiv Detail & Related papers (2024-11-07T21:37:51Z) - LMLPA: Language Model Linguistic Personality Assessment [11.599282127259736]
Large Language Models (LLMs) are increasingly used in everyday life and research.
measuring the personality of a given LLM is currently a challenge.
This paper introduces the Language Model Linguistic Personality Assessment (LMLPA), a system designed to evaluate the linguistic personalities of LLMs.
arXiv Detail & Related papers (2024-10-23T07:48:51Z) - How do Large Language Models Navigate Conflicts between Honesty and
Helpfulness? [14.706111954807021]
We use psychological models and experiments designed to characterize human behavior to analyze large language models.
We find that reinforcement learning from human feedback improves both honesty and helpfulness.
GPT-4 Turbo demonstrates human-like response patterns including sensitivity to the conversational framing and listener's decision context.
arXiv Detail & Related papers (2024-02-11T19:13:26Z) - LLM Agents in Interaction: Measuring Personality Consistency and
Linguistic Alignment in Interacting Populations of Large Language Models [4.706971067968811]
We create a two-group population of large language models (LLMs) agents using a simple variability-inducing sampling algorithm.
We administer personality tests and submit the agents to a collaborative writing task, finding that different profiles exhibit different degrees of personality consistency and linguistic alignment to their conversational partners.
arXiv Detail & Related papers (2024-02-05T11:05:20Z) - Relying on the Unreliable: The Impact of Language Models' Reluctance to Express Uncertainty [53.336235704123915]
We investigate how LMs incorporate confidence in responses via natural language and how downstream users behave in response to LM-articulated uncertainties.
We find that LMs are reluctant to express uncertainties when answering questions even when they produce incorrect responses.
We test the risks of LM overconfidence by conducting human experiments and show that users rely heavily on LM generations.
Lastly, we investigate the preference-annotated datasets used in post training alignment and find that humans are biased against texts with uncertainty.
arXiv Detail & Related papers (2024-01-12T18:03:30Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
Large Language Models (LLMs) have demonstrated their ability to replicate human behaviors across a wide range of scenarios.
However, their capability in handling complex, multi-character social interactions has yet to be fully explored.
We introduce the Multi-Agent Interaction Evaluation Framework (AntEval), encompassing a novel interaction framework and evaluation methods.
arXiv Detail & Related papers (2024-01-12T11:18:00Z) - Affect Recognition in Conversations Using Large Language Models [9.689990547610664]
Affect recognition plays a pivotal role in human communication.
This study investigates the capacity of large language models (LLMs) to recognise human affect in conversations.
arXiv Detail & Related papers (2023-09-22T14:11:23Z) - Evaluating Language Models for Mathematics through Interactions [116.67206980096513]
We introduce CheckMate, a prototype platform for humans to interact with and evaluate large language models (LLMs)
We conduct a study with CheckMate to evaluate three language models (InstructGPT, ChatGPT, and GPT-4) as assistants in proving undergraduate-level mathematics.
We derive a taxonomy of human behaviours and uncover that despite a generally positive correlation, there are notable instances of divergence between correctness and perceived helpfulness.
arXiv Detail & Related papers (2023-06-02T17:12:25Z) - Heterogeneous Value Alignment Evaluation for Large Language Models [91.96728871418]
Large Language Models (LLMs) have made it crucial to align their values with those of humans.
We propose a Heterogeneous Value Alignment Evaluation (HVAE) system to assess the success of aligning LLMs with heterogeneous values.
arXiv Detail & Related papers (2023-05-26T02:34:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.