Flow4D: Leveraging 4D Voxel Network for LiDAR Scene Flow Estimation
- URL: http://arxiv.org/abs/2407.07995v1
- Date: Wed, 10 Jul 2024 18:55:43 GMT
- Title: Flow4D: Leveraging 4D Voxel Network for LiDAR Scene Flow Estimation
- Authors: Jaeyeul Kim, Jungwan Woo, Ukcheol Shin, Jean Oh, Sunghoon Im,
- Abstract summary: Flow4D temporally fuses multiple point clouds after the 3D intra-voxel feature encoder.
Spatio-Temporal De Blockcomposition (STDB) combines 3D and 1D convolutions instead of using heavy 4D convolutions.
Flow4D achieves a 45.9% higher performance compared to the state-of-the-art while running in real-time.
- Score: 20.904903264632733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the motion states of the surrounding environment is critical for safe autonomous driving. These motion states can be accurately derived from scene flow, which captures the three-dimensional motion field of points. Existing LiDAR scene flow methods extract spatial features from each point cloud and then fuse them channel-wise, resulting in the implicit extraction of spatio-temporal features. Furthermore, they utilize 2D Bird's Eye View and process only two frames, missing crucial spatial information along the Z-axis and the broader temporal context, leading to suboptimal performance. To address these limitations, we propose Flow4D, which temporally fuses multiple point clouds after the 3D intra-voxel feature encoder, enabling more explicit extraction of spatio-temporal features through a 4D voxel network. However, while using 4D convolution improves performance, it significantly increases the computational load. For further efficiency, we introduce the Spatio-Temporal Decomposition Block (STDB), which combines 3D and 1D convolutions instead of using heavy 4D convolution. In addition, Flow4D further improves performance by using five frames to take advantage of richer temporal information. As a result, the proposed method achieves a 45.9% higher performance compared to the state-of-the-art while running in real-time, and won 1st place in the 2024 Argoverse 2 Scene Flow Challenge. The code is available at https://github.com/dgist-cvlab/Flow4D.
Related papers
- S4D: Streaming 4D Real-World Reconstruction with Gaussians and 3D Control Points [30.46796069720543]
We introduce a novel approach for streaming 4D real-world reconstruction utilizing discrete 3D control points.
This method physically models local rays and establishes a motion-decoupling coordinate system.
By effectively merging traditional graphics with learnable pipelines, it provides a robust and efficient local 6-degrees-of-freedom (6 DoF) motion representation.
arXiv Detail & Related papers (2024-08-23T12:51:49Z) - MAMBA4D: Efficient Long-Sequence Point Cloud Video Understanding with Disentangled Spatial-Temporal State Space Models [14.024240637175216]
We propose a novel 4D point cloud video understanding backbone based on the recently advanced State Space Models (SSMs)
Specifically, our backbone begins by disentangling space and time in raw 4D geometries, and then establishing semantic-temporal videos.
Our method has an 87.5% memory reduction, 5.36 times speedup, and much higher accuracy (up to +104%) compared with transformer-based counterparts MS3D.
arXiv Detail & Related papers (2024-05-23T09:08:09Z) - DeFlow: Decoder of Scene Flow Network in Autonomous Driving [19.486167661795797]
Scene flow estimation determines a scene's 3D motion field, by predicting the motion of points in the scene.
Many networks with large-scale point clouds as input use voxelization to create a pseudo-image for real-time running.
Our paper introduces DeFlow which enables a transition from voxel-based features to point features using Gated Recurrent Unit (GRU) refinement.
arXiv Detail & Related papers (2024-01-29T12:47:55Z) - Motion2VecSets: 4D Latent Vector Set Diffusion for Non-rigid Shape Reconstruction and Tracking [52.393359791978035]
Motion2VecSets is a 4D diffusion model for dynamic surface reconstruction from point cloud sequences.
We parameterize 4D dynamics with latent sets instead of using global latent codes.
For more temporally-coherent object tracking, we synchronously denoise deformation latent sets and exchange information across multiple frames.
arXiv Detail & Related papers (2024-01-12T15:05:08Z) - 4DGen: Grounded 4D Content Generation with Spatial-temporal Consistency [118.15258850780417]
This work introduces 4DGen, a novel framework for grounded 4D content creation.
We identify static 3D assets and monocular video sequences as key components in constructing the 4D content.
Our pipeline facilitates conditional 4D generation, enabling users to specify geometry (3D assets) and motion (monocular videos)
arXiv Detail & Related papers (2023-12-28T18:53:39Z) - X4D-SceneFormer: Enhanced Scene Understanding on 4D Point Cloud Videos
through Cross-modal Knowledge Transfer [28.719098240737605]
We propose a novel cross-modal knowledge transfer framework, called X4D-SceneFormer.
It enhances 4D-Scene understanding by transferring texture priors from RGB sequences using a Transformer architecture with temporal relationship mining.
Experiments demonstrate the superior performance of our framework on various 4D point cloud video understanding tasks.
arXiv Detail & Related papers (2023-12-12T15:48:12Z) - NeRFPlayer: A Streamable Dynamic Scene Representation with Decomposed
Neural Radiance Fields [99.57774680640581]
We present an efficient framework capable of fast reconstruction, compact modeling, and streamable rendering.
We propose to decompose the 4D space according to temporal characteristics. Points in the 4D space are associated with probabilities belonging to three categories: static, deforming, and new areas.
arXiv Detail & Related papers (2022-10-28T07:11:05Z) - Learning Spatial and Temporal Variations for 4D Point Cloud Segmentation [0.39373541926236766]
We argue that the temporal information across the frames provides crucial knowledge for 3D scene perceptions.
We design a temporal variation-aware module and a temporal voxel-point refiner to capture the temporal variation in the 4D point cloud.
arXiv Detail & Related papers (2022-07-11T07:36:26Z) - DS-Net: Dynamic Spatiotemporal Network for Video Salient Object
Detection [78.04869214450963]
We propose a novel dynamic temporal-temporal network (DSNet) for more effective fusion of temporal and spatial information.
We show that the proposed method achieves superior performance than state-of-the-art algorithms.
arXiv Detail & Related papers (2020-12-09T06:42:30Z) - A Real-time Action Representation with Temporal Encoding and Deep
Compression [115.3739774920845]
We propose a new real-time convolutional architecture, called Temporal Convolutional 3D Network (T-C3D), for action representation.
T-C3D learns video action representations in a hierarchical multi-granularity manner while obtaining a high process speed.
Our method achieves clear improvements on UCF101 action recognition benchmark against state-of-the-art real-time methods by 5.4% in terms of accuracy and 2 times faster in terms of inference speed with a less than 5MB storage model.
arXiv Detail & Related papers (2020-06-17T06:30:43Z) - V4D:4D Convolutional Neural Networks for Video-level Representation
Learning [58.548331848942865]
Most 3D CNNs for video representation learning are clip-based, and thus do not consider video-temporal evolution of features.
We propose Video-level 4D Conal Neural Networks, or V4D, to model long-range representation with 4D convolutions.
V4D achieves excellent results, surpassing recent 3D CNNs by a large margin.
arXiv Detail & Related papers (2020-02-18T09:27:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.