Dynamics-Aware Gaussian Splatting Streaming Towards Fast On-the-Fly Training for 4D Reconstruction
- URL: http://arxiv.org/abs/2411.14847v1
- Date: Fri, 22 Nov 2024 10:47:47 GMT
- Title: Dynamics-Aware Gaussian Splatting Streaming Towards Fast On-the-Fly Training for 4D Reconstruction
- Authors: Zhening Liu, Yingdong Hu, Xinjie Zhang, Jiawei Shao, Zehong Lin, Jun Zhang,
- Abstract summary: Current 3DGS-based streaming methods treat the Gaussian primitives uniformly and constantly renew the densified Gaussians.
We propose a novel three-stage pipeline for iterative streamable 4D dynamic spatial reconstruction.
Our method achieves state-of-the-art performance in online 4D reconstruction, demonstrating a 20% improvement in on-the-fly training speed, superior representation quality, and real-time rendering capability.
- Score: 12.111389926333592
- License:
- Abstract: The recent development of 3D Gaussian Splatting (3DGS) has led to great interest in 4D dynamic spatial reconstruction from multi-view visual inputs. While existing approaches mainly rely on processing full-length multi-view videos for 4D reconstruction, there has been limited exploration of iterative online reconstruction methods that enable on-the-fly training and per-frame streaming. Current 3DGS-based streaming methods treat the Gaussian primitives uniformly and constantly renew the densified Gaussians, thereby overlooking the difference between dynamic and static features and also neglecting the temporal continuity in the scene. To address these limitations, we propose a novel three-stage pipeline for iterative streamable 4D dynamic spatial reconstruction. Our pipeline comprises a selective inheritance stage to preserve temporal continuity, a dynamics-aware shift stage for distinguishing dynamic and static primitives and optimizing their movements, and an error-guided densification stage to accommodate emerging objects. Our method achieves state-of-the-art performance in online 4D reconstruction, demonstrating a 20% improvement in on-the-fly training speed, superior representation quality, and real-time rendering capability. Project page: https://www.liuzhening.top/DASS
Related papers
- Driv3R: Learning Dense 4D Reconstruction for Autonomous Driving [116.10577967146762]
We propose Driv3R, a framework that directly regresses per-frame point maps from multi-view image sequences.
We employ a 4D flow predictor to identify moving objects within the scene to direct our network focus more on reconstructing these dynamic regions.
Driv3R outperforms previous frameworks in 4D dynamic scene reconstruction, achieving 15x faster inference speed.
arXiv Detail & Related papers (2024-12-09T18:58:03Z) - Urban4D: Semantic-Guided 4D Gaussian Splatting for Urban Scene Reconstruction [86.4386398262018]
Urban4D is a semantic-guided decomposition strategy inspired by advances in deep 2D semantic map generation.
Our approach distinguishes potentially dynamic objects through reliable semantic Gaussians.
Experiments on real-world datasets demonstrate that Urban4D achieves comparable or better quality than previous state-of-the-art methods.
arXiv Detail & Related papers (2024-12-04T16:59:49Z) - 4D Scaffold Gaussian Splatting for Memory Efficient Dynamic Scene Reconstruction [27.455934322535853]
This paper proposes a 4D anchor-based framework that retains visual quality and rendering speed of 4D Gaussians while reducing storage costs.
Experimental results demonstrate that our method achieves state-of-the-art visual quality and 97.8% storage reduction over 4DGS.
arXiv Detail & Related papers (2024-11-26T02:22:07Z) - 4D Gaussian Splatting in the Wild with Uncertainty-Aware Regularization [43.81271239333774]
We propose a novel 4D Gaussian Splatting (4DGS) algorithm for dynamic scenes from casually recorded monocular videos.
Our experiments show that the proposed method improves the performance of 4DGS reconstruction from a video captured by a handheld monocular camera.
arXiv Detail & Related papers (2024-11-13T18:56:39Z) - S4D: Streaming 4D Real-World Reconstruction with Gaussians and 3D Control Points [30.46796069720543]
We introduce a novel approach for streaming 4D real-world reconstruction utilizing discrete 3D control points.
This method physically models local rays and establishes a motion-decoupling coordinate system.
By effectively merging traditional graphics with learnable pipelines, it provides a robust and efficient local 6-degrees-of-freedom (6 DoF) motion representation.
arXiv Detail & Related papers (2024-08-23T12:51:49Z) - Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models [116.31344506738816]
We present a novel framework, textbfDiffusion4D, for efficient and scalable 4D content generation.
We develop a 4D-aware video diffusion model capable of synthesizing orbital views of dynamic 3D assets.
Our method surpasses prior state-of-the-art techniques in terms of generation efficiency and 4D geometry consistency.
arXiv Detail & Related papers (2024-05-26T17:47:34Z) - SC4D: Sparse-Controlled Video-to-4D Generation and Motion Transfer [57.506654943449796]
We propose an efficient, sparse-controlled video-to-4D framework named SC4D that decouples motion and appearance.
Our method surpasses existing methods in both quality and efficiency.
We devise a novel application that seamlessly transfers motion onto a diverse array of 4D entities.
arXiv Detail & Related papers (2024-04-04T18:05:18Z) - EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via
Self-Supervision [85.17951804790515]
EmerNeRF is a simple yet powerful approach for learning spatial-temporal representations of dynamic driving scenes.
It simultaneously captures scene geometry, appearance, motion, and semantics via self-bootstrapping.
Our method achieves state-of-the-art performance in sensor simulation.
arXiv Detail & Related papers (2023-11-03T17:59:55Z) - NeRFPlayer: A Streamable Dynamic Scene Representation with Decomposed
Neural Radiance Fields [99.57774680640581]
We present an efficient framework capable of fast reconstruction, compact modeling, and streamable rendering.
We propose to decompose the 4D space according to temporal characteristics. Points in the 4D space are associated with probabilities belonging to three categories: static, deforming, and new areas.
arXiv Detail & Related papers (2022-10-28T07:11:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.