Automated Neural Patent Landscaping in the Small Data Regime
- URL: http://arxiv.org/abs/2407.08001v1
- Date: Wed, 10 Jul 2024 19:13:37 GMT
- Title: Automated Neural Patent Landscaping in the Small Data Regime
- Authors: Tisa Islam Erana, Mark A. Finlayson,
- Abstract summary: The rapid expansion of patenting activity in recent decades has driven an increasing need for efficient and effective automated patent landscaping approaches.
We present an automated neural patent landscaping system that demonstrates significantly improved performance on difficult examples.
- Score: 6.284464997330885
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Patent landscaping is the process of identifying all patents related to a particular technological area, and is important for assessing various aspects of the intellectual property context. Traditionally, constructing patent landscapes is intensely laborious and expensive, and the rapid expansion of patenting activity in recent decades has driven an increasing need for efficient and effective automated patent landscaping approaches. In particular, it is critical that we be able to construct patent landscapes using a minimal number of labeled examples, as labeling patents for a narrow technology area requires highly specialized (and hence expensive) technical knowledge. We present an automated neural patent landscaping system that demonstrates significantly improved performance on difficult examples (0.69 $F_1$ on 'hard' examples, versus 0.6 for previously reported systems), and also significant improvements with much less training data (overall 0.75 $F_1$ on as few as 24 examples). Furthermore, in evaluating such automated landscaping systems, acquiring good data is challenge; we demonstrate a higher-quality training data generation procedure by merging Abood and Feltenberger's (2018) "seed/anti-seed" approach with active learning to collect difficult labeled examples near the decision boundary. Using this procedure we created a new dataset of labeled AI patents for training and testing. As in prior work we compare our approach with a number of baseline systems, and we release our code and data for others to build upon.
Related papers
- PatentGPT: A Large Language Model for Patent Drafting Using Knowledge-based Fine-tuning Method [1.4496326701907591]
Existing large language models (LLMs) often fall short in this IP creation domain due to their lack of specialized knowledge and context-awareness.
We propose a groundbreaking framework for Knowledge Fine-Tuning (KFT) of LLMs, designed to endow AI with the ability to autonomously mine, understand, and apply domain-specific knowledge.
Our model, PatentGPT, has demonstrated outstanding performance, scoring up to approximately 400% higher in patent related benchmark tests compared to state-of-the-art models.
arXiv Detail & Related papers (2024-08-26T12:00:29Z) - Inference Optimization of Foundation Models on AI Accelerators [68.24450520773688]
Powerful foundation models, including large language models (LLMs), with Transformer architectures have ushered in a new era of Generative AI.
As the number of model parameters reaches to hundreds of billions, their deployment incurs prohibitive inference costs and high latency in real-world scenarios.
This tutorial offers a comprehensive discussion on complementary inference optimization techniques using AI accelerators.
arXiv Detail & Related papers (2024-07-12T09:24:34Z) - A Comprehensive Survey on AI-based Methods for Patents [14.090575139188422]
AI-based tools present opportunities to streamline and enhance important tasks in the patent cycle.
This interdisciplinary survey aims to serve as a resource for researchers and practitioners working at the intersection of AI and patent analysis.
arXiv Detail & Related papers (2024-04-02T20:44:06Z) - Unveiling Black-boxes: Explainable Deep Learning Models for Patent
Classification [48.5140223214582]
State-of-the-art methods for multi-label patent classification rely on deep opaque neural networks (DNNs)
We propose a novel deep explainable patent classification framework by introducing layer-wise relevance propagation (LRP)
Considering the relevance score, we then generate explanations by visualizing relevant words for the predicted patent class.
arXiv Detail & Related papers (2023-10-31T14:11:37Z) - Multi label classification of Artificial Intelligence related patents
using Modified D2SBERT and Sentence Attention mechanism [0.0]
We present a method for classifying artificial intelligence-related patents published by the USPTO using natural language processing technique and deep learning methodology.
Our experiment result is highest performance compared to other deep learning methods.
arXiv Detail & Related papers (2023-03-03T12:27:24Z) - Design Automation for Fast, Lightweight, and Effective Deep Learning
Models: A Survey [53.258091735278875]
This survey covers studies of design automation techniques for deep learning models targeting edge computing.
It offers an overview and comparison of key metrics that are used commonly to quantify the proficiency of models in terms of effectiveness, lightness, and computational costs.
The survey proceeds to cover three categories of the state-of-the-art of deep model design automation techniques.
arXiv Detail & Related papers (2022-08-22T12:12:43Z) - A Survey on Sentence Embedding Models Performance for Patent Analysis [0.0]
We propose a standard library and dataset for assessing the accuracy of embeddings models based on PatentSBERTa approach.
Results show PatentSBERTa, Bert-for-patents, and TF-IDF Weighted Word Embeddings have the best accuracy for computing sentence embeddings at the subclass level.
arXiv Detail & Related papers (2022-04-28T12:04:42Z) - Automated Single-Label Patent Classification using Ensemble Classifiers [0.0]
We present an innovative method of ensemble classifiers trained with different parts of the patent document.
To the best of our knowledge, this is the first time that an ensemble method was proposed for the patent classification problem.
arXiv Detail & Related papers (2022-03-03T08:47:15Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Pre-Trained Models: Past, Present and Future [126.21572378910746]
Large-scale pre-trained models (PTMs) have recently achieved great success and become a milestone in the field of artificial intelligence (AI)
By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks.
It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch.
arXiv Detail & Related papers (2021-06-14T02:40:32Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
We train automatic recruitment algorithms using a set of multimodal synthetic profiles consciously scored with gender and racial biases.
Our methodology and results show how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.
arXiv Detail & Related papers (2020-04-15T15:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.