Label-anticipated Event Disentanglement for Audio-Visual Video Parsing
- URL: http://arxiv.org/abs/2407.08126v1
- Date: Thu, 11 Jul 2024 01:57:08 GMT
- Title: Label-anticipated Event Disentanglement for Audio-Visual Video Parsing
- Authors: Jinxing Zhou, Dan Guo, Yuxin Mao, Yiran Zhong, Xiaojun Chang, Meng Wang,
- Abstract summary: We introduce a new decoding paradigm, underlinelabel sunderlineemunderlineantic-based underlineprojection (LEAP)
LEAP works by iteratively projecting encoded latent features of audio/visual segments onto semantically independent label embeddings.
To facilitate the LEAP paradigm, we propose a semantic-aware optimization strategy, which includes a novel audio-visual semantic similarity loss function.
- Score: 61.08434062821899
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Audio-Visual Video Parsing (AVVP) task aims to detect and temporally locate events within audio and visual modalities. Multiple events can overlap in the timeline, making identification challenging. While traditional methods usually focus on improving the early audio-visual encoders to embed more effective features, the decoding phase -- crucial for final event classification, often receives less attention. We aim to advance the decoding phase and improve its interpretability. Specifically, we introduce a new decoding paradigm, \underline{l}abel s\underline{e}m\underline{a}ntic-based \underline{p}rojection (LEAP), that employs labels texts of event categories, each bearing distinct and explicit semantics, for parsing potentially overlapping events.LEAP works by iteratively projecting encoded latent features of audio/visual segments onto semantically independent label embeddings. This process, enriched by modeling cross-modal (audio/visual-label) interactions, gradually disentangles event semantics within video segments to refine relevant label embeddings, guaranteeing a more discriminative and interpretable decoding process. To facilitate the LEAP paradigm, we propose a semantic-aware optimization strategy, which includes a novel audio-visual semantic similarity loss function. This function leverages the Intersection over Union of audio and visual events (EIoU) as a novel metric to calibrate audio-visual similarities at the feature level, accommodating the varied event densities across modalities. Extensive experiments demonstrate the superiority of our method, achieving new state-of-the-art performance for AVVP and also enhancing the relevant audio-visual event localization task.
Related papers
- Towards Open-Vocabulary Audio-Visual Event Localization [59.23161248808759]
We introduce the Open-Vocabulary Audio-Visual Event localization problem.
This problem requires localizing audio-visual events and predicting explicit categories for both seen and unseen data at inference.
We propose the OV-AVEBench dataset, comprising 24,800 videos across 67 real-life audio-visual scenes.
arXiv Detail & Related papers (2024-11-18T04:35:20Z) - Locality-aware Cross-modal Correspondence Learning for Dense Audio-Visual Events Localization [50.122441710500055]
Dense-localization Audio-Visual Events (DAVE) aims to identify time boundaries and corresponding categories for events that can be heard and seen concurrently in an untrimmed video.
Existing methods typically encode audio and visual representation separately without any explicit cross-modal alignment constraint.
We present LOCO, a Locality-aware cross-modal Correspondence learning framework for DAVE.
arXiv Detail & Related papers (2024-09-12T11:54:25Z) - VQ-CTAP: Cross-Modal Fine-Grained Sequence Representation Learning for Speech Processing [81.32613443072441]
For tasks such as text-to-speech (TTS), voice conversion (VC), and automatic speech recognition (ASR), a cross-modal fine-grained (frame-level) sequence representation is desired.
We propose a method called Quantized Contrastive Token-Acoustic Pre-training (VQ-CTAP), which uses the cross-modal sequence transcoder to bring text and speech into a joint space.
arXiv Detail & Related papers (2024-08-11T12:24:23Z) - CACE-Net: Co-guidance Attention and Contrastive Enhancement for Effective Audio-Visual Event Localization [11.525177542345215]
We introduce CACE-Net, which differs from most existing methods that solely use audio signals to guide visual information.
We propose an audio-visual co-guidance attention mechanism that allows for adaptive bi-directional cross-modal attentional guidance.
Experiments on the AVE dataset demonstrate that CACE-Net sets a new benchmark in the audio-visual event localization task.
arXiv Detail & Related papers (2024-08-04T07:48:12Z) - Audio-visual Generalized Zero-shot Learning the Easy Way [20.60905505473906]
We introduce EZ-AVGZL, which aligns audio-visual embeddings with transformed text representations.
We conduct extensive experiments on VGGSound-GZSL, UCF-GZSL, and ActivityNet-GZSL benchmarks.
arXiv Detail & Related papers (2024-07-18T01:57:16Z) - CM-PIE: Cross-modal perception for interactive-enhanced audio-visual
video parsing [23.85763377992709]
We propose a novel interactive-enhanced cross-modal perception method(CM-PIE), which can learn fine-grained features by applying a segment-based attention module.
We show that our model offers improved parsing performance on the Look, Listen, and Parse dataset.
arXiv Detail & Related papers (2023-10-11T14:15:25Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
We propose two novel techniques to improve audio-visual speech recognition (AVSR) under a pre-training and fine-tuning training framework.
First, we explore the correlation between lip shapes and syllable-level subword units in Mandarin to establish good frame-level syllable boundaries from lip shapes.
Next, we propose an audio-guided cross-modal fusion encoder (CMFE) neural network to utilize main training parameters for multiple cross-modal attention layers.
arXiv Detail & Related papers (2023-08-14T08:19:24Z) - Revisit Weakly-Supervised Audio-Visual Video Parsing from the Language
Perspective [41.07880755312204]
We focus on the weakly-supervised audio-visual video parsing task (AVVP), which aims to identify and locate all the events in audio/visual modalities.
We consider tackling AVVP from the language perspective, since language could freely describe how various events appear in each segment beyond fixed labels.
Our simple yet effective approach outperforms state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2023-06-01T12:12:22Z) - Learning Grounded Vision-Language Representation for Versatile
Understanding in Untrimmed Videos [57.830865926459914]
We propose a vision-language learning framework for untrimmed videos, which automatically detects informative events.
Instead of coarse-level video-language alignments, we present two dual pretext tasks to encourage fine-grained segment-level alignments.
Our framework is easily to tasks covering visually-grounded language understanding and generation.
arXiv Detail & Related papers (2023-03-11T11:00:16Z) - Leveraging the Video-level Semantic Consistency of Event for
Audio-visual Event Localization [8.530561069113716]
We propose a novel video-level semantic consistency guidance network for the AVE localization task.
It consists of two components: a cross-modal event representation extractor and an intra-modal semantic consistency enhancer.
We perform extensive experiments on the public AVE dataset and outperform the state-of-the-art methods in both fully- and weakly-supervised settings.
arXiv Detail & Related papers (2022-10-11T08:15:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.