CACE-Net: Co-guidance Attention and Contrastive Enhancement for Effective Audio-Visual Event Localization
- URL: http://arxiv.org/abs/2408.01952v1
- Date: Sun, 4 Aug 2024 07:48:12 GMT
- Title: CACE-Net: Co-guidance Attention and Contrastive Enhancement for Effective Audio-Visual Event Localization
- Authors: Xiang He, Xiangxi Liu, Yang Li, Dongcheng Zhao, Guobin Shen, Qingqun Kong, Xin Yang, Yi Zeng,
- Abstract summary: We introduce CACE-Net, which differs from most existing methods that solely use audio signals to guide visual information.
We propose an audio-visual co-guidance attention mechanism that allows for adaptive bi-directional cross-modal attentional guidance.
Experiments on the AVE dataset demonstrate that CACE-Net sets a new benchmark in the audio-visual event localization task.
- Score: 11.525177542345215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The audio-visual event localization task requires identifying concurrent visual and auditory events from unconstrained videos within a network model, locating them, and classifying their category. The efficient extraction and integration of audio and visual modal information have always been challenging in this field. In this paper, we introduce CACE-Net, which differs from most existing methods that solely use audio signals to guide visual information. We propose an audio-visual co-guidance attention mechanism that allows for adaptive bi-directional cross-modal attentional guidance between audio and visual information, thus reducing inconsistencies between modalities. Moreover, we have observed that existing methods have difficulty distinguishing between similar background and event and lack the fine-grained features for event classification. Consequently, we employ background-event contrast enhancement to increase the discrimination of fused feature and fine-tuned pre-trained model to extract more refined and discernible features from complex multimodal inputs. Specifically, we have enhanced the model's ability to discern subtle differences between event and background and improved the accuracy of event classification in our model. Experiments on the AVE dataset demonstrate that CACE-Net sets a new benchmark in the audio-visual event localization task, proving the effectiveness of our proposed methods in handling complex multimodal learning and event localization in unconstrained videos. Code is available at https://github.com/Brain-Cog-Lab/CACE-Net.
Related papers
- Locality-aware Cross-modal Correspondence Learning for Dense Audio-Visual Events Localization [50.122441710500055]
Dense-localization Audio-Visual Events (DAVE) aims to identify time boundaries and corresponding categories for events that can be heard and seen concurrently in an untrimmed video.
Existing methods typically encode audio and visual representation separately without any explicit cross-modal alignment constraint.
We present LOCO, a Locality-aware cross-modal Correspondence learning framework for DAVE.
arXiv Detail & Related papers (2024-09-12T11:54:25Z) - Label-anticipated Event Disentanglement for Audio-Visual Video Parsing [61.08434062821899]
We introduce a new decoding paradigm, underlinelabel sunderlineemunderlineantic-based underlineprojection (LEAP)
LEAP works by iteratively projecting encoded latent features of audio/visual segments onto semantically independent label embeddings.
To facilitate the LEAP paradigm, we propose a semantic-aware optimization strategy, which includes a novel audio-visual semantic similarity loss function.
arXiv Detail & Related papers (2024-07-11T01:57:08Z) - Cooperative Dual Attention for Audio-Visual Speech Enhancement with
Facial Cues [80.53407593586411]
We focus on leveraging facial cues beyond the lip region for robust Audio-Visual Speech Enhancement (AVSE)
We propose a Dual Attention Cooperative Framework, DualAVSE, to ignore speech-unrelated information, capture speech-related information with facial cues, and dynamically integrate it with the audio signal for AVSE.
arXiv Detail & Related papers (2023-11-24T04:30:31Z) - Rethink Cross-Modal Fusion in Weakly-Supervised Audio-Visual Video
Parsing [58.9467115916639]
We propose a messenger-guided mid-fusion transformer to reduce the uncorrelated cross-modal context in the fusion.
The messengers condense the full cross-modal context into a compact representation to only preserve useful cross-modal information.
We thus propose cross-audio prediction consistency to suppress the impact of irrelevant audio information on visual event prediction.
arXiv Detail & Related papers (2023-11-14T13:27:03Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
We propose two novel techniques to improve audio-visual speech recognition (AVSR) under a pre-training and fine-tuning training framework.
First, we explore the correlation between lip shapes and syllable-level subword units in Mandarin to establish good frame-level syllable boundaries from lip shapes.
Next, we propose an audio-guided cross-modal fusion encoder (CMFE) neural network to utilize main training parameters for multiple cross-modal attention layers.
arXiv Detail & Related papers (2023-08-14T08:19:24Z) - Leveraging the Video-level Semantic Consistency of Event for
Audio-visual Event Localization [8.530561069113716]
We propose a novel video-level semantic consistency guidance network for the AVE localization task.
It consists of two components: a cross-modal event representation extractor and an intra-modal semantic consistency enhancer.
We perform extensive experiments on the public AVE dataset and outperform the state-of-the-art methods in both fully- and weakly-supervised settings.
arXiv Detail & Related papers (2022-10-11T08:15:57Z) - Multi-Modulation Network for Audio-Visual Event Localization [138.14529518908736]
We study the problem of localizing audio-visual events that are both audible and visible in a video.
Existing works focus on encoding and aligning audio and visual features at the segment level.
We propose a novel MultiModulation Network (M2N) to learn the above correlation and leverage it as semantic guidance.
arXiv Detail & Related papers (2021-08-26T13:11:48Z) - Multi-level Attention Fusion Network for Audio-visual Event Recognition [6.767885381740951]
Event classification is inherently sequential and multimodal.
Deep neural models need to dynamically focus on the most relevant time window and/or modality of a video.
We propose the Multi-level Attention Fusion network (MAFnet), an architecture that can dynamically fuse visual and audio information for event recognition.
arXiv Detail & Related papers (2021-06-12T10:24:52Z) - Look, Listen, and Attend: Co-Attention Network for Self-Supervised
Audio-Visual Representation Learning [17.6311804187027]
An underlying correlation between audio and visual events can be utilized as free supervised information to train a neural network.
We propose a novel self-supervised framework with co-attention mechanism to learn generic cross-modal representations from unlabelled videos.
Experiments show that our model achieves state-of-the-art performance on the pretext task while having fewer parameters compared with existing methods.
arXiv Detail & Related papers (2020-08-13T10:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.