AddressCLIP: Empowering Vision-Language Models for City-wide Image Address Localization
- URL: http://arxiv.org/abs/2407.08156v1
- Date: Thu, 11 Jul 2024 03:18:53 GMT
- Title: AddressCLIP: Empowering Vision-Language Models for City-wide Image Address Localization
- Authors: Shixiong Xu, Chenghao Zhang, Lubin Fan, Gaofeng Meng, Shiming Xiang, Jieping Ye,
- Abstract summary: We propose an end-to-end framework named AddressCLIP to solve the problem with more semantics.
We have built three datasets from Pittsburgh and San Francisco on different scales specifically for the IAL problem.
- Score: 57.34659640776723
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we introduce a new problem raised by social media and photojournalism, named Image Address Localization (IAL), which aims to predict the readable textual address where an image was taken. Existing two-stage approaches involve predicting geographical coordinates and converting them into human-readable addresses, which can lead to ambiguity and be resource-intensive. In contrast, we propose an end-to-end framework named AddressCLIP to solve the problem with more semantics, consisting of two key ingredients: i) image-text alignment to align images with addresses and scene captions by contrastive learning, and ii) image-geography matching to constrain image features with the spatial distance in terms of manifold learning. Additionally, we have built three datasets from Pittsburgh and San Francisco on different scales specifically for the IAL problem. Experiments demonstrate that our approach achieves compelling performance on the proposed datasets and outperforms representative transfer learning methods for vision-language models. Furthermore, extensive ablations and visualizations exhibit the effectiveness of the proposed method. The datasets and source code are available at https://github.com/xsx1001/AddressCLIP.
Related papers
- ProGEO: Generating Prompts through Image-Text Contrastive Learning for Visual Geo-localization [0.0]
We propose a two-stage training method to enhance visual performance and use contrastive learning to mine challenging samples.
We validate the effectiveness of the proposed strategy on several large-scale visual geo-localization datasets.
arXiv Detail & Related papers (2024-06-04T02:28:51Z) - Augment the Pairs: Semantics-Preserving Image-Caption Pair Augmentation
for Grounding-Based Vision and Language Models [16.4010094165575]
We propose a robust phrase grounding model trained with text-conditioned and text-unconditioned data augmentations.
Inspired by recent masked signal reconstruction, we propose to use pixel-level masking as a novel form of data augmentation.
Our method demonstrates advanced performance over the state-of-the-arts with various metrics.
arXiv Detail & Related papers (2023-11-05T01:14:02Z) - Adapt and Align to Improve Zero-Shot Sketch-Based Image Retrieval [85.39613457282107]
Cross-domain nature of sketch-based image retrieval is challenging.
We present an effective Adapt and Align'' approach to address the key challenges.
Inspired by recent advances in image-text foundation models (e.g., CLIP) on zero-shot scenarios, we explicitly align the learned image embedding with a more semantic text embedding to achieve the desired knowledge transfer from seen to unseen classes.
arXiv Detail & Related papers (2023-05-09T03:10:15Z) - CSP: Self-Supervised Contrastive Spatial Pre-Training for
Geospatial-Visual Representations [90.50864830038202]
We present Contrastive Spatial Pre-Training (CSP), a self-supervised learning framework for geo-tagged images.
We use a dual-encoder to separately encode the images and their corresponding geo-locations, and use contrastive objectives to learn effective location representations from images.
CSP significantly boosts the model performance with 10-34% relative improvement with various labeled training data sampling ratios.
arXiv Detail & Related papers (2023-05-01T23:11:18Z) - Vision-Language Pre-Training with Triple Contrastive Learning [45.80365827890119]
We propose triple contrastive learning (TCL) for vision-language pre-training by leveraging both cross-modal and intra-modal self-supervision.
Ours is the first work that takes into account local structure information for multi-modality representation learning.
arXiv Detail & Related papers (2022-02-21T17:54:57Z) - RegionCLIP: Region-based Language-Image Pretraining [94.29924084715316]
Contrastive language-image pretraining (CLIP) using image-text pairs has achieved impressive results on image classification.
We propose a new method called RegionCLIP that significantly extends CLIP to learn region-level visual representations.
Our method significantly outperforms the state of the art by 3.8 AP50 and 2.2 AP for novel categories on COCO and LVIS datasets.
arXiv Detail & Related papers (2021-12-16T18:39:36Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - Dual Graph Convolutional Networks with Transformer and Curriculum
Learning for Image Captioning [26.496357517937614]
Existing image captioning methods just focus on understanding the relationship between objects or instances in a single image.
We propose Dual Graph Convolutional Networks (Dual-GCN) with transformer and curriculum learning for image captioning.
arXiv Detail & Related papers (2021-08-05T04:57:06Z) - Scaling Up Visual and Vision-Language Representation Learning With Noisy
Text Supervision [57.031588264841]
We leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps.
A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss.
We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme.
arXiv Detail & Related papers (2021-02-11T10:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.