DSCENet: Dynamic Screening and Clinical-Enhanced Multimodal Fusion for MPNs Subtype Classification
- URL: http://arxiv.org/abs/2407.08167v1
- Date: Thu, 11 Jul 2024 04:13:58 GMT
- Title: DSCENet: Dynamic Screening and Clinical-Enhanced Multimodal Fusion for MPNs Subtype Classification
- Authors: Yuan Zhang, Yaolei Qi, Xiaoming Qi, Yongyue Wei, Guanyu Yang,
- Abstract summary: We propose a Dynamic Screening and Clinical-Enhanced Network (DSCENet) for the subtype classification of MPNs on the multimodal fusion of whole slide images (WSIs) and clinical information.
Our approach has been validated on the real clinical data, achieving an increase of 7.91% AUC and 16.89% accuracy compared with the previous state-of-the-art methods.
- Score: 8.95697172316912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The precise subtype classification of myeloproliferative neoplasms (MPNs) based on multimodal information, which assists clinicians in diagnosis and long-term treatment plans, is of great clinical significance. However, it remains a great challenging task due to the lack of diagnostic representativeness for local patches and the absence of diagnostic-relevant features from a single modality. In this paper, we propose a Dynamic Screening and Clinical-Enhanced Network (DSCENet) for the subtype classification of MPNs on the multimodal fusion of whole slide images (WSIs) and clinical information. (1) A dynamic screening module is proposed to flexibly adapt the feature learning of local patches, reducing the interference of irrelevant features and enhancing their diagnostic representativeness. (2) A clinical-enhanced fusion module is proposed to integrate clinical indicators to explore complementary features across modalities, providing comprehensive diagnostic information. Our approach has been validated on the real clinical data, achieving an increase of 7.91% AUC and 16.89% accuracy compared with the previous state-of-the-art (SOTA) methods. The code is available at https://github.com/yuanzhang7/DSCENet.
Related papers
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
This study focuses on the clinical evaluation of medical Synthetic Data Generation using Artificial Intelligence (AI) models.
The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis.
The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - Insight: A Multi-Modal Diagnostic Pipeline using LLMs for Ocular Surface Disease Diagnosis [17.970320199904084]
We introduce an innovative multi-modal diagnostic pipeline (MDPipe) by employing large language models (LLMs) for ocular surface disease diagnosis.
To tackle these challenges, we introduce an innovative multi-modal diagnostic pipeline (MDPipe) by employing large language models (LLMs) for ocular surface disease diagnosis.
arXiv Detail & Related papers (2024-10-01T00:23:05Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Graph-Ensemble Learning Model for Multi-label Skin Lesion Classification
using Dermoscopy and Clinical Images [7.159532626507458]
This study introduces a Graph Convolution Network (GCN) to exploit prior co-occurrence between each category as a correlation matrix into the deep learning model for the multi-label classification.
We propose a Graph-Ensemble Learning Model (GELN) that views the prediction from GCN as complementary information of the predictions from the fusion model.
arXiv Detail & Related papers (2023-07-04T13:19:57Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
We report a Transformer-based representation-learning model as a clinical diagnostic aid that processes multimodal input in a unified manner.
The unified model outperformed an image-only model and non-unified multimodal diagnosis models in the identification of pulmonary diseases.
arXiv Detail & Related papers (2023-06-01T16:23:47Z) - Detecting Histologic & Clinical Glioblastoma Patterns of Prognostic
Relevance [6.281092892485014]
Glioblastoma is the most common and aggressive malignant adult tumor of the central nervous system.
Since adopting the current standard-of-care treatment 18 years ago, no substantial prognostic improvement has been noticed.
Here, we focus on identifying prognostically relevant characteristics from H&E stained WSI & clinical data relating to OS.
arXiv Detail & Related papers (2023-02-01T18:56:09Z) - Fusing Medical Image Features and Clinical Features with Deep Learning
for Computer-Aided Diagnosis [7.99493100852929]
We propose a novel deep learning-based method for fusing MRI/CT images and clinical information for diagnostic tasks.
We evaluate the proposed method on its applications to Alzheimer's disease diagnosis, mild cognitive impairment converter prediction and hepatic microvascular invasion diagnosis.
arXiv Detail & Related papers (2021-03-10T03:37:21Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.