Deep Understanding of Soccer Match Videos
- URL: http://arxiv.org/abs/2407.08200v1
- Date: Thu, 11 Jul 2024 05:54:13 GMT
- Title: Deep Understanding of Soccer Match Videos
- Authors: Shikun Xu, Yandong Zhu, Gen Li, Changhu Wang,
- Abstract summary: Soccer is one of the most popular sport worldwide, with live broadcasts frequently available for major matches.
Our system can detect key objects such as soccer balls, players and referees.
It also tracks the movements of players and the ball, recognizes player numbers, classifies scenes, and identifies highlights such as goal kicks.
- Score: 20.783415560412003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Soccer is one of the most popular sport worldwide, with live broadcasts frequently available for major matches. However, extracting detailed, frame-by-frame information on player actions from these videos remains a challenge. Utilizing state-of-the-art computer vision technologies, our system can detect key objects such as soccer balls, players and referees. It also tracks the movements of players and the ball, recognizes player numbers, classifies scenes, and identifies highlights such as goal kicks. By analyzing live TV streams of soccer matches, our system can generate highlight GIFs, tactical illustrations, and diverse summary graphs of ongoing games. Through these visual recognition techniques, we deliver a comprehensive understanding of soccer game videos, enriching the viewer's experience with detailed and insightful analysis.
Related papers
- Deep learning for action spotting in association football videos [64.10841325879996]
The SoccerNet initiative organizes yearly challenges, during which participants from all around the world compete to achieve state-of-the-art performances.
This paper traces the history of action spotting in sports, from the creation of the task back in 2018, to the role it plays today in research and the sports industry.
arXiv Detail & Related papers (2024-10-02T07:56:15Z) - SoccerNet 2024 Challenges Results [152.8534707514927]
SoccerNet 2024 challenges represent the fourth annual video understanding challenges organized by the SoccerNet team.
The challenges aim to advance research across multiple themes in football, including broadcast video understanding, field understanding, and player understanding.
This year, the challenges encompass four vision-based tasks.
arXiv Detail & Related papers (2024-09-16T14:12:22Z) - GOAL: A Challenging Knowledge-grounded Video Captioning Benchmark for
Real-time Soccer Commentary Generation [75.60413443783953]
We present GOAL, a benchmark of over 8.9k soccer video clips, 22k sentences, and 42k knowledge triples for proposing a challenging new task setting as Knowledge-grounded Video Captioning (KGVC)
Our data and code are available at https://github.com/THU-KEG/goal.
arXiv Detail & Related papers (2023-03-26T08:43:36Z) - A Graph-Based Method for Soccer Action Spotting Using Unsupervised
Player Classification [75.93186954061943]
Action spotting involves understanding the dynamics of the game, the complexity of events, and the variation of video sequences.
In this work, we focus on the former by (a) identifying and representing the players, referees, and goalkeepers as nodes in a graph, and by (b) modeling their temporal interactions as sequences of graphs.
For the player identification task, our method obtains an overall performance of 57.83% average-mAP by combining it with other modalities.
arXiv Detail & Related papers (2022-11-22T15:23:53Z) - A Survey on Video Action Recognition in Sports: Datasets, Methods and
Applications [60.3327085463545]
We present a survey on video action recognition for sports analytics.
We introduce more than ten types of sports, including team sports, such as football, basketball, volleyball, hockey and individual sports, such as figure skating, gymnastics, table tennis, diving and badminton.
We develop a toolbox using PaddlePaddle, which supports football, basketball, table tennis and figure skating action recognition.
arXiv Detail & Related papers (2022-06-02T13:19:36Z) - A Multi-stage deep architecture for summary generation of soccer videos [11.41978608521222]
We propose a method to generate the summary of a soccer match exploiting both the audio and the event metadata.
The results show that our method can detect the actions of the match, identify which of these actions should belong to the summary and then propose multiple candidate summaries.
arXiv Detail & Related papers (2022-05-02T07:26:35Z) - Feature Combination Meets Attention: Baidu Soccer Embeddings and
Transformer based Temporal Detection [3.7709686875144337]
We present a two-stage paradigm to detect what and when events happen in soccer broadcast videos.
Specifically, we fine-tune multiple action recognition models on soccer data to extract high-level semantic features.
This approach achieved the state-of-the-art performance in both two tasks, i.e., action spotting and replay grounding, in the SoccerNet-v2 Challenge.
arXiv Detail & Related papers (2021-06-28T08:00:21Z) - Video-based Analysis of Soccer Matches [15.328109388727997]
This paper provides a comprehensive overview and categorization of the methods developed for the video-based visual analysis of soccer matches.
We identify and discuss open research questions, soon enabling analysts to develop winning strategies more efficiently.
arXiv Detail & Related papers (2021-05-11T09:01:02Z) - SoccerNet-v2: A Dataset and Benchmarks for Holistic Understanding of
Broadcast Soccer Videos [71.72665910128975]
SoccerNet-v2 is a novel large-scale corpus of manual annotations for the SoccerNet video dataset.
We release around 300k annotations within SoccerNet's 500 untrimmed broadcast soccer videos.
We extend current tasks in the realm of soccer to include action spotting, camera shot segmentation with boundary detection.
arXiv Detail & Related papers (2020-11-26T16:10:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.