stEnTrans: Transformer-based deep learning for spatial transcriptomics enhancement
- URL: http://arxiv.org/abs/2407.08224v1
- Date: Thu, 11 Jul 2024 06:50:34 GMT
- Title: stEnTrans: Transformer-based deep learning for spatial transcriptomics enhancement
- Authors: Shuailin Xue, Fangfang Zhu, Changmiao Wang, Wenwen Min,
- Abstract summary: We present stEnTrans, a deep learning method based on Transformer architecture that provides comprehensive predictions for gene expression in unmeasured areas.
We evaluate stEnTrans on six datasets and the results indicate superior performance in enhancing spots resolution and predicting gene expression in unmeasured areas.
- Score: 1.3124513975412255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The spatial location of cells within tissues and organs is crucial for the manifestation of their specific functions.Spatial transcriptomics technology enables comprehensive measurement of the gene expression patterns in tissues while retaining spatial information. However, current popular spatial transcriptomics techniques either have shallow sequencing depth or low resolution. We present stEnTrans, a deep learning method based on Transformer architecture that provides comprehensive predictions for gene expression in unmeasured areas or unexpectedly lost areas and enhances gene expression in original and inputed spots. Utilizing a self-supervised learning approach, stEnTrans establishes proxy tasks on gene expression profile without requiring additional data, mining intrinsic features of the tissues as supervisory information. We evaluate stEnTrans on six datasets and the results indicate superior performance in enhancing spots resolution and predicting gene expression in unmeasured areas compared to other deep learning and traditional interpolation methods. Additionally, Our method also can help the discovery of spatial patterns in Spatial Transcriptomics and enrich to more biologically significant pathways. Our source code is available at https://github.com/shuailinxue/stEnTrans.
Related papers
- Distance-Preserving Generative Modeling of Spatial Transcriptomics [0.0]
We introduce a class of distance-preserving generative models for spatial transcriptomics.
We use the provided spatial information to regularize the learned representation space of gene expressions to have a similar pair-wise distance structure.
Our framework grants compatibility with any variational-inference-based generative models for gene expression modeling.
arXiv Detail & Related papers (2024-08-01T21:04:27Z) - SpaDiT: Diffusion Transformer for Spatial Gene Expression Prediction using scRNA-seq [9.624390863643109]
SpaDiT is a deep learning method that integrates scRNA-seq and ST data for the prediction of undetected genes.
We have demonstrated the effectiveness of SpaDiT through extensive experiments on both seq-based and image-based ST data.
arXiv Detail & Related papers (2024-07-18T05:40:50Z) - Revisiting Adaptive Cellular Recognition Under Domain Shifts: A Contextual Correspondence View [49.03501451546763]
We identify the importance of implicit correspondences across biological contexts for exploiting domain-invariant pathological composition.
We propose self-adaptive dynamic distillation to secure instance-aware trade-offs across different model constituents.
arXiv Detail & Related papers (2024-07-14T04:41:16Z) - Multimodal contrastive learning for spatial gene expression prediction using histology images [13.47034080678041]
We propose textbfmclSTExp, a multimodal contrastive learning with Transformer and Densenet-121 encoder for Spatial Transcriptomics Expression prediction.
textbfmclSTExp has superior performance in predicting spatial gene expression.
It has shown promise in interpreting cancer-specific overexpressed genes, elucidating immune-related genes, and identifying specialized spatial domains annotated by pathologists.
arXiv Detail & Related papers (2024-07-11T06:33:38Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Latent Space Inference For Spatial Transcriptomics [0.196629787330046]
We investigate a probabilistic machine learning method to obtain the full genetic expression information for tissues samples.
This is done through mapping both datasets to a joint latent space representation with the use of variational machine learning methods.
From here, the full genetic and spatial information can be decoded and to give us greater insights on the understanding of cellular processes and pathways.
arXiv Detail & Related papers (2023-11-01T06:50:00Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - SEPAL: Spatial Gene Expression Prediction from Local Graphs [1.4523812806185954]
We present SEPAL, a new model for predicting genetic profiles from visual tissue appearance.
Our method exploits the biological biases of the problem by directly supervising relative differences with respect to mean expression.
We propose a novel benchmark that aims to better define the task by following current best practices in transcriptomics.
arXiv Detail & Related papers (2023-09-02T23:24:02Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
Cancer is the second major cause of death after cardiovascular diseases.
Gene expression can play a fundamental role in the early detection of cancer.
This study reviews recent progress in gene expression analysis for cancer classification using machine learning methods.
arXiv Detail & Related papers (2023-01-28T15:03:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.