Spatially-Variant Degradation Model for Dataset-free Super-resolution
- URL: http://arxiv.org/abs/2407.08252v1
- Date: Thu, 11 Jul 2024 07:54:43 GMT
- Title: Spatially-Variant Degradation Model for Dataset-free Super-resolution
- Authors: Shaojie Guo, Haofei Song, Qingli Li, Yan Wang,
- Abstract summary: This paper focuses on the dataset-free Blind Image Super-Resolution (BISR)
We are the first to explicitly design a spatially-variant degradation model for each pixel.
Our method achieves a significant improvement over other state-of-the-art BISR methods, with an average improvement of 1 dB (2x)
- Score: 12.346260233825173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper focuses on the dataset-free Blind Image Super-Resolution (BISR). Unlike existing dataset-free BISR methods that focus on obtaining a degradation kernel for the entire image, we are the first to explicitly design a spatially-variant degradation model for each pixel. Our method also benefits from having a significantly smaller number of learnable parameters compared to data-driven spatially-variant BISR methods. Concretely, each pixel's degradation kernel is expressed as a linear combination of a learnable dictionary composed of a small number of spatially-variant atom kernels. The coefficient matrices of the atom degradation kernels are derived using membership functions of fuzzy set theory. We construct a novel Probabilistic BISR model with tailored likelihood function and prior terms. Subsequently, we employ the Monte Carlo EM algorithm to infer the degradation kernels for each pixel. Our method achieves a significant improvement over other state-of-the-art BISR methods, with an average improvement of 1 dB (2x).Code will be released at https://github.com/shaojieguoECNU/SVDSR.
Related papers
- Neural Fields with Thermal Activations for Arbitrary-Scale Super-Resolution [56.089473862929886]
We present a novel way to design neural fields such that points can be queried with an adaptive Gaussian PSF.
With its theoretically guaranteed anti-aliasing, our method sets a new state of the art for arbitrary-scale single image super-resolution.
arXiv Detail & Related papers (2023-11-29T14:01:28Z) - Improving Pixel-based MIM by Reducing Wasted Modeling Capability [77.99468514275185]
We propose a new method that explicitly utilizes low-level features from shallow layers to aid pixel reconstruction.
To the best of our knowledge, we are the first to systematically investigate multi-level feature fusion for isotropic architectures.
Our method yields significant performance gains, such as 1.2% on fine-tuning, 2.8% on linear probing, and 2.6% on semantic segmentation.
arXiv Detail & Related papers (2023-08-01T03:44:56Z) - Binarized Spectral Compressive Imaging [59.18636040850608]
Existing deep learning models for hyperspectral image (HSI) reconstruction achieve good performance but require powerful hardwares with enormous memory and computational resources.
We propose a novel method, Binarized Spectral-Redistribution Network (BiSRNet)
BiSRNet is derived by using the proposed techniques to binarize the base model.
arXiv Detail & Related papers (2023-05-17T15:36:08Z) - Inverse Kernel Decomposition [3.066967635405937]
We propose a novel nonlinear dimensionality reduction method -- Inverse Kernel Decomposition (IKD)
IKD is based on an eigen-decomposition of the sample covariance matrix of data.
We use synthetic datasets and four real-world datasets to show that IKD is a better dimensionality reduction method than other eigen-decomposition-based methods.
arXiv Detail & Related papers (2022-11-11T02:14:29Z) - Unfolded Deep Kernel Estimation for Blind Image Super-resolution [23.798845090992728]
Blind image super-resolution (BISR) aims to reconstruct a high-resolution image from its low-resolution counterpart degraded by unknown blur kernel and noise.
We propose a novel unfolded deep kernel estimation (UDKE) method, which, for the first time to our best knowledge, explicitly solves the data term with high efficiency.
arXiv Detail & Related papers (2022-03-10T07:54:59Z) - Deep Constrained Least Squares for Blind Image Super-Resolution [36.71106982590893]
We tackle the problem of blind image super-resolution(SR) with a reformulated degradation model and two novel modules.
To be more specific, we first reformulate the degradation model such that the deblurring kernel estimation can be transferred into the low resolution space.
Our experiments demonstrate that the proposed method achieves better accuracy and visual improvements against state-of-the-art methods.
arXiv Detail & Related papers (2022-02-15T15:32:11Z) - Mutual Affine Network for Spatially Variant Kernel Estimation in Blind
Image Super-Resolution [130.32026819172256]
Existing blind image super-resolution (SR) methods mostly assume blur kernels are spatially invariant across the whole image.
This paper proposes a mutual affine network (MANet) for spatially variant kernel estimation.
arXiv Detail & Related papers (2021-08-11T16:11:17Z) - Flow-based Kernel Prior with Application to Blind Super-Resolution [143.21527713002354]
Kernel estimation is generally one of the key problems for blind image super-resolution (SR)
This paper proposes a normalizing flow-based kernel prior (FKP) for kernel modeling.
Experiments on synthetic and real-world images demonstrate that the proposed FKP can significantly improve the kernel estimation accuracy.
arXiv Detail & Related papers (2021-03-29T22:37:06Z) - Memory and Computation-Efficient Kernel SVM via Binary Embedding and
Ternary Model Coefficients [18.52747917850984]
Kernel approximation is widely used to scale up kernel SVM training and prediction.
Memory and computation costs of kernel approximation models are still too high if we want to deploy them on memory-limited devices.
We propose a novel memory and computation-efficient kernel SVM model by using both binary embedding and binary model coefficients.
arXiv Detail & Related papers (2020-10-06T09:41:54Z) - A Generalized Kernel Risk Sensitive Loss for Robust Two-Dimensional
Singular Value Decomposition [11.234115388848283]
Two-dimensional singular decomposition (2DSVD) has been widely used for image processing tasks, such as image reconstruction, classification, and clustering.
Traditional 2DSVD is based on the mean square error (MSE) loss, which is sensitive to outliers.
We propose a robustDSVD based on a generalized kernel risk of noise and outliers.
arXiv Detail & Related papers (2020-05-10T14:02:40Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.