Binarized Spectral Compressive Imaging
- URL: http://arxiv.org/abs/2305.10299v3
- Date: Wed, 18 Oct 2023 13:13:25 GMT
- Title: Binarized Spectral Compressive Imaging
- Authors: Yuanhao Cai, Yuxin Zheng, Jing Lin, Xin Yuan, Yulun Zhang, Haoqian
Wang
- Abstract summary: Existing deep learning models for hyperspectral image (HSI) reconstruction achieve good performance but require powerful hardwares with enormous memory and computational resources.
We propose a novel method, Binarized Spectral-Redistribution Network (BiSRNet)
BiSRNet is derived by using the proposed techniques to binarize the base model.
- Score: 59.18636040850608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing deep learning models for hyperspectral image (HSI) reconstruction
achieve good performance but require powerful hardwares with enormous memory
and computational resources. Consequently, these methods can hardly be deployed
on resource-limited mobile devices. In this paper, we propose a novel method,
Binarized Spectral-Redistribution Network (BiSRNet), for efficient and
practical HSI restoration from compressed measurement in snapshot compressive
imaging (SCI) systems. Firstly, we redesign a compact and easy-to-deploy base
model to be binarized. Then we present the basic unit, Binarized
Spectral-Redistribution Convolution (BiSR-Conv). BiSR-Conv can adaptively
redistribute the HSI representations before binarizing activation and uses a
scalable hyperbolic tangent function to closer approximate the Sign function in
backpropagation. Based on our BiSR-Conv, we customize four binarized
convolutional modules to address the dimension mismatch and propagate
full-precision information throughout the whole network. Finally, our BiSRNet
is derived by using the proposed techniques to binarize the base model.
Comprehensive quantitative and qualitative experiments manifest that our
proposed BiSRNet outperforms state-of-the-art binarization methods and achieves
comparable performance with full-precision algorithms. Code and models are
publicly available at https://github.com/caiyuanhao1998/BiSCI and
https://github.com/caiyuanhao1998/MST
Related papers
- Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
Binarization, an ultra-compression algorithm, offers the potential for effectively accelerating advanced diffusion models (DMs)
Existing binarization methods result in significant performance degradation.
We introduce a novel binarized diffusion model, BI-DiffSR, for image SR.
arXiv Detail & Related papers (2024-06-09T10:30:25Z) - MsDC-DEQ-Net: Deep Equilibrium Model (DEQ) with Multi-scale Dilated
Convolution for Image Compressive Sensing (CS) [0.0]
Compressive sensing (CS) is a technique that enables the recovery of sparse signals using fewer measurements than traditional sampling methods.
We develop an interpretable and concise neural network model for reconstructing natural images using CS.
The model, called MsDC-DEQ-Net, exhibits competitive performance compared to state-of-the-art network-based methods.
arXiv Detail & Related papers (2024-01-05T16:25:58Z) - Input Layer Binarization with Bit-Plane Encoding [4.872439392746007]
We present a new method to binarize the first layer using directly the 8-bit representation of input data.
The resulting model is fully binarized and our first layer binarization approach is model independent.
arXiv Detail & Related papers (2023-05-04T14:49:07Z) - BiFSMNv2: Pushing Binary Neural Networks for Keyword Spotting to
Real-Network Performance [54.214426436283134]
Deep neural networks, such as the Deep-FSMN, have been widely studied for keyword spotting (KWS) applications.
We present a strong yet efficient binary neural network for KWS, namely BiFSMNv2, pushing it to the real-network accuracy performance.
We highlight that benefiting from the compact architecture and optimized hardware kernel, BiFSMNv2 can achieve an impressive 25.1x speedup and 20.2x storage-saving on edge hardware.
arXiv Detail & Related papers (2022-11-13T18:31:45Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly.
A simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work.
It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs.
arXiv Detail & Related papers (2022-09-26T22:22:30Z) - AdaBin: Improving Binary Neural Networks with Adaptive Binary Sets [27.022212653067367]
This paper studies the Binary Neural Networks (BNNs) in which weights and activations are both binarized into 1-bit values.
We present a simple yet effective approach called AdaBin to adaptively obtain the optimal binary sets.
Experimental results on benchmark models and datasets demonstrate that the proposed AdaBin is able to achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-08-17T05:43:33Z) - Content-aware Scalable Deep Compressed Sensing [8.865549833627794]
We present a novel content-aware scalable network dubbed CASNet to address image compressed sensing problems.
We first adopt a data-driven saliency detector to evaluate the importances of different image regions and propose a saliency-based block ratio aggregation (BRA) strategy for sampling rate allocation.
To accelerate training convergence and improve network robustness, we propose an SVD-based scheme and a random transformation enhancement (RTE) strategy.
arXiv Detail & Related papers (2022-07-19T14:59:14Z) - Spectral Compressive Imaging Reconstruction Using Convolution and
Contextual Transformer [6.929652454131988]
We propose a hybrid network module, namely CCoT (Contextual Transformer) block, which can acquire the inductive bias ability of transformer simultaneously.
We integrate the proposed CCoT block into deep unfolding framework based on the generalized alternating projection algorithm, and further propose the GAP-CT network.
arXiv Detail & Related papers (2022-01-15T06:30:03Z) - A New Backbone for Hyperspectral Image Reconstruction [90.48427561874402]
3D hyperspectral image (HSI) reconstruction refers to inverse process of snapshot compressive imaging.
Proposal is for a Spatial/Spectral Invariant Residual U-Net, namely SSI-ResU-Net.
We show that SSI-ResU-Net achieves competing performance with over 77.3% reduction in terms of floating-point operations.
arXiv Detail & Related papers (2021-08-17T16:20:51Z) - Accurate and Lightweight Image Super-Resolution with Model-Guided Deep
Unfolding Network [63.69237156340457]
We present and advocate an explainable approach toward SISR named model-guided deep unfolding network (MoG-DUN)
MoG-DUN is accurate (producing fewer aliasing artifacts), computationally efficient (with reduced model parameters), and versatile (capable of handling multiple degradations)
The superiority of the proposed MoG-DUN method to existing state-of-theart image methods including RCAN, SRDNF, and SRFBN is substantiated by extensive experiments on several popular datasets and various degradation scenarios.
arXiv Detail & Related papers (2020-09-14T08:23:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.