論文の概要: Adversarial-MidiBERT: Symbolic Music Understanding Model Based on Unbias Pre-training and Mask Fine-tuning
- arxiv url: http://arxiv.org/abs/2407.08306v1
- Date: Thu, 11 Jul 2024 08:54:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 18:09:27.595746
- Title: Adversarial-MidiBERT: Symbolic Music Understanding Model Based on Unbias Pre-training and Mask Fine-tuning
- Title(参考訳): Adversarial-MidiBERT:Unbias事前学習とマスクファインチューニングに基づくシンボリック音楽理解モデル
- Authors: Zijian Zhao,
- Abstract要約: 変換器によるバイバーサ表現に基づく記号的音楽理解モデルAdrial-MidiBERTを提案する。
逆学習に基づく非バイアス付き事前学習手法を導入し、トレーニング中にバイアスにつながるトークンの参加を最小限に抑えるとともに、事前学習と微調整のデータギャップを狭めるマスクファインチューニング手法を提案する。
- 参考スコア(独自算出の注目度): 2.61072980439312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As an important part of Music Information Retrieval (MIR), Symbolic Music Understanding (SMU) has gained substantial attention, as it can assist musicians and amateurs in learning and creating music. Recently, pre-trained language models have been widely adopted in SMU because the symbolic music shares a huge similarity with natural language, and the pre-trained manner also helps make full use of limited music data. However, the issue of bias, such as sexism, ageism, and racism, has been observed in pre-trained language models, which is attributed to the imbalanced distribution of training data. It also has a significant influence on the performance of downstream tasks, which also happens in SMU. To address this challenge, we propose Adversarial-MidiBERT, a symbolic music understanding model based on Bidirectional Encoder Representations from Transformers (BERT). We introduce an unbiased pre-training method based on adversarial learning to minimize the participation of tokens that lead to biases during training. Furthermore, we propose a mask fine-tuning method to narrow the data gap between pre-training and fine-tuning, which can help the model converge faster and perform better. We evaluate our method on four music understanding tasks, and our approach demonstrates excellent performance in all of them. The code for our model is publicly available at https://github.com/RS2002/Adversarial-MidiBERT.
- Abstract(参考訳): 音楽情報検索 (MIR) の重要な要素として,音楽の学習・作成において音楽家やアマチュアを支援できるシンボリック音楽理解 (SMU) が注目されている。
近年,SMUでは,記号的音楽が自然言語と非常に類似しているため,事前学習された言語モデルが広く採用されている。
しかし、性差別、年齢主義、人種差別といった偏見の問題は、トレーニングデータの不均衡分布に起因する事前学習言語モデルで観察されている。
また、下流タスクのパフォーマンスにも大きな影響を与えており、これはSMUでも起こっている。
そこで本稿では,変換器からの双方向エンコーダ表現に基づく記号的音楽理解モデルであるAdversarial-MidiBERTを提案する。
対戦学習に基づくバイアスのない事前学習手法を導入し,学習中のバイアスにつながるトークンの参加を最小化する。
さらに,事前学習と微調整の間のデータギャップを狭めるマスクファインチューニング手法を提案する。
本手法は4つの音楽理解課題において評価し,そのすべてにおいて優れた性能を示す。
私たちのモデルのコードはhttps://github.com/RS2002/Adversarial-MidiBERT.comで公開されています。
関連論文リスト
- Foundation Models for Music: A Survey [77.77088584651268]
ファンデーションモデル(FM)は音楽を含む様々な分野に大きな影響を与えている。
本総説では,音楽の事前学習モデルと基礎モデルについて概観する。
論文 参考訳(メタデータ) (2024-08-26T15:13:14Z) - Towards Explainable and Interpretable Musical Difficulty Estimation: A Parameter-efficient Approach [49.2787113554916]
音楽コレクションの整理には曲の難易度を推定することが重要である。
シンボリックな音楽表現の難易度推定には説明可能な記述子を用いる。
ピアノレパートリーで評価したアプローチは,平均2乗誤差(MSE)が1.7。
論文 参考訳(メタデータ) (2024-08-01T11:23:42Z) - An Experimental Comparison Of Multi-view Self-supervised Methods For Music Tagging [6.363158395541767]
自己教師付き学習は、大量のラベルのないデータに基づいて、一般化可能な機械学習モデルを事前訓練するための強力な方法として登場した。
本研究では,音楽タギングのための新たな自己指導手法の性能について検討し,比較する。
論文 参考訳(メタデータ) (2024-04-14T07:56:08Z) - MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
音楽の事前学習におけるLarge Language Models (LLM) の適用について検討する。
生成過程の異なるトラックからの不整合対策に関連する課題に対処するために,SMT-ABC Notation(Synchronized Multi-Track ABC Notation)を提案する。
私たちのコントリビューションには、最大8192個のトークンを処理可能な一連のモデルが含まれており、トレーニングセットの象徴的な音楽データの90%をカバーしています。
論文 参考訳(メタデータ) (2024-04-09T15:35:52Z) - MERT: Acoustic Music Understanding Model with Large-Scale Self-supervised Training [74.32603591331718]
本稿では,MLMスタイルの音響事前学習において,教師モデルと擬似ラベルを組み込んだ大規模自己教師型学習(MERT)を用いた音響音楽理解モデルを提案する。
実験結果から,本モデルでは14曲の楽曲理解タスクを一般化し,性能を向上し,SOTA(State-of-the-art)全体のスコアを達成できることが示唆された。
論文 参考訳(メタデータ) (2023-05-31T18:27:43Z) - Exploring the Efficacy of Pre-trained Checkpoints in Text-to-Music
Generation Task [86.72661027591394]
テキスト記述から完全で意味論的に一貫したシンボリック音楽の楽譜を生成する。
テキスト・音楽生成タスクにおける自然言語処理のための公開チェックポイントの有効性について検討する。
実験結果から, BLEUスコアと編集距離の類似性において, 事前学習によるチェックポイントの使用による改善が統計的に有意であることが示唆された。
論文 参考訳(メタデータ) (2022-11-21T07:19:17Z) - Supervised and Unsupervised Learning of Audio Representations for Music
Understanding [9.239657838690226]
トレーニング済みデータセットのドメインが、ダウンストリームタスクに対するオーディオ埋め込みの結果の妥当性にどのように影響するかを示す。
大規模専門家による注釈付き音楽データセットの教師あり学習により訓練されたモデルが,最先端のパフォーマンスを実現することを示す。
論文 参考訳(メタデータ) (2022-10-07T20:07:35Z) - Learning music audio representations via weak language supervision [14.335950077921435]
我々は,一連のプロキシタスクによって最適化された音楽と言語事前学習(MuLaP)のためのマルチモーダルアーキテクチャを設計する。
弱い監督は、トラックの全体的な音楽内容を伝える、騒々しい自然言語記述の形で提供される。
提案手法の有効性を,同一のオーディオバックボーンが生成する音声表現の性能と,異なる学習戦略とを比較して示す。
論文 参考訳(メタデータ) (2021-12-08T10:30:52Z) - MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training [97.91071692716406]
シンボリック・ミュージックの理解(シンボリック・ミュージックの理解)とは、シンボリック・データから音楽を理解することを指す。
MusicBERTは、音楽理解のための大規模な事前訓練モデルである。
論文 参考訳(メタデータ) (2021-06-10T10:13:05Z) - Contrastive Learning of Musical Representations [0.0]
SimCLRを音楽領域に導入し、音楽の生の波形の自己監督学習のためのフレームワークを形成する:CLMR。
CLMRの表現はドメイン外のデータセットで転送可能であることを示し、重要な音楽知識を捉えていることを示す。
音楽における自己教師付き学習の促進と今後の研究のために,本論文のすべての実験の事前学習モデルとソースコードをgithubに公開する。
論文 参考訳(メタデータ) (2021-03-17T02:53:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。