論文の概要: Intelligent Multi-Document Summarisation for Extracting Insights on Racial Inequalities from Maternity Incident Investigation Reports
- arxiv url: http://arxiv.org/abs/2407.08322v1
- Date: Thu, 11 Jul 2024 09:11:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 18:09:27.581576
- Title: Intelligent Multi-Document Summarisation for Extracting Insights on Racial Inequalities from Maternity Incident Investigation Reports
- Title(参考訳): 知的多文書要約による母性事故調査報告からの人種不平等の抽出
- Authors: Georgina Cosma, Mohit Kumar Singh, Patrick Waterson, Gyuchan Thomas Jun, Jonathan Back,
- Abstract要約: 医療では、毎年何千もの安全事故が発生するが、これらの事故から学ぶことは効果的に集約されない。
本稿では,安全事故報告の集約と分析を容易にするためのフレームワークであるI-SIRch:CSを提案する。
このフレームワークは、セーフティ・インテリジェンス・リサーチ(SIRch)の分類学を用いた概念アノテーションと、クラスタリング、要約、分析機能を統合する。
- 参考スコア(独自算出の注目度): 0.8609957371651683
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In healthcare, thousands of safety incidents occur every year, but learning from these incidents is not effectively aggregated. Analysing incident reports using AI could uncover critical insights to prevent harm by identifying recurring patterns and contributing factors. To aggregate and extract valuable information, natural language processing (NLP) and machine learning techniques can be employed to summarise and mine unstructured data, potentially surfacing systemic issues and priority areas for improvement. This paper presents I-SIRch:CS, a framework designed to facilitate the aggregation and analysis of safety incident reports while ensuring traceability throughout the process. The framework integrates concept annotation using the Safety Intelligence Research (SIRch) taxonomy with clustering, summarisation, and analysis capabilities. Utilising a dataset of 188 anonymised maternity investigation reports annotated with 27 SIRch human factors concepts, I-SIRch:CS groups the annotated sentences into clusters using sentence embeddings and k-means clustering, maintaining traceability via file and sentence IDs. Summaries are generated for each cluster using offline state-of-the-art abstractive summarisation models (BART, DistilBART, T5), which are evaluated and compared using metrics assessing summary quality attributes. The generated summaries are linked back to the original file and sentence IDs, ensuring traceability and allowing for verification of the summarised information. Results demonstrate BART's strengths in creating informative and concise summaries.
- Abstract(参考訳): 医療では、毎年何千もの安全事故が発生するが、これらの事故から学ぶことは効果的に集約されない。
AIを用いたインシデントレポートの分析は、繰り返し発生するパターンを特定し、要因を寄与させることによって害を防ぐ重要な洞察を明らかにする可能性がある。
貴重な情報を収集・抽出するために、自然言語処理(NLP)と機械学習技術を用いて、構造化されていないデータを要約し、マイニングし、システム上の問題や改善のための優先領域に直面する可能性がある。
本稿では,プロセス全体のトレーサビリティを確保しつつ,安全インシデントレポートの集約と解析を容易にするフレームワークであるI-SIRch:CSを提案する。
このフレームワークは、セーフティ・インテリジェンス・リサーチ(SIRch)の分類学を用いた概念アノテーションと、クラスタリング、要約、分析機能を統合する。
I-SIRch:CSは、匿名化母性調査188件のレポートを27のSIRchのヒューマンファクター概念に注釈付けし、注釈付き文を文埋め込みとk-meansクラスタリングを使用してクラスタにグループ化し、ファイルと文IDを介してトレーサビリティを維持する。
各クラスタに対して、オフラインの最先端抽象要約モデル(BART、DistilBART、T5)を用いて要約を生成し、要約品質特性を評価するメトリクスを用いて評価・比較する。
生成された要約は元のファイルと文IDにリンクされ、トレーサビリティを確保し、要約された情報の検証を可能にする。
結果は、BARTが情報的かつ簡潔な要約を作成する上での強みを示している。
関連論文リスト
- Towards Enhancing Coherence in Extractive Summarization: Dataset and Experiments with LLMs [70.15262704746378]
我々は,5つの公開データセットと自然言語ユーザフィードバックのためのコヒーレントな要約からなる,体系的に作成された人間アノテーションデータセットを提案する。
Falcon-40BとLlama-2-13Bによる予備的な実験では、コヒーレントなサマリーを生成するという点で大幅な性能向上(10%ルージュ-L)が見られた。
論文 参考訳(メタデータ) (2024-07-05T20:25:04Z) - JADS: A Framework for Self-supervised Joint Aspect Discovery and Summarization [3.992091862806936]
私たちのソリューションはトピックの発見と要約をひとつのステップに統合します。
テキストデータから,JADS(Joint Aspect Discovery and Summarization Algorithm)が入力からアスペクトを検出する。
提案手法は,地上の真理と高いセマンティックアライメントを実現し,現実的である。
論文 参考訳(メタデータ) (2024-05-28T23:01:57Z) - Attribute Structuring Improves LLM-Based Evaluation of Clinical Text
Summaries [62.32403630651586]
大規模言語モデル(LLM)は、正確な臨床テキスト要約を生成する可能性を示しているが、根拠付けと評価に関する問題に苦慮している。
本稿では、要約評価プロセスを構成するAttribute Structuring(AS)を用いた一般的な緩和フレームワークについて検討する。
ASは、臨床テキスト要約における人間のアノテーションと自動メトリクスの対応性を一貫して改善する。
論文 参考訳(メタデータ) (2024-03-01T21:59:03Z) - AMRFact: Enhancing Summarization Factuality Evaluation with AMR-Driven Negative Samples Generation [57.8363998797433]
抽象的意味表現(AMR)を用いた摂動要約を生成するフレームワークであるAMRFactを提案する。
提案手法は,AMRグラフに一貫した要約を解析し,制御された事実不整合を注入して負の例を生成し,一貫性のない事実不整合要約を高い誤差型カバレッジで生成する。
論文 参考訳(メタデータ) (2023-11-16T02:56:29Z) - SummIt: Iterative Text Summarization via ChatGPT [12.966825834765814]
本稿では,ChatGPTのような大規模言語モデルに基づく反復的なテキスト要約フレームワークSummItを提案する。
我々のフレームワークは、自己評価とフィードバックによって生成された要約を反復的に洗練することを可能にする。
また, 繰り返し改良の有効性を検証し, 過補正の潜在的な問題を特定するために, 人間の評価を行う。
論文 参考訳(メタデータ) (2023-05-24T07:40:06Z) - SWING: Balancing Coverage and Faithfulness for Dialogue Summarization [67.76393867114923]
本稿では,自然言語推論(NLI)モデルを用いて,事実の不整合を回避し,カバレッジを向上させることを提案する。
我々は、NLIを用いて詳細なトレーニング信号を計算し、モデルがカバーされていない参照サマリーのコンテンツを生成することを奨励する。
DialogSumおよびSAMSumデータセットの実験により,提案手法の有効性が確認された。
論文 参考訳(メタデータ) (2023-01-25T09:33:11Z) - SNaC: Coherence Error Detection for Narrative Summarization [73.48220043216087]
SNaCは長文の微粒化アノテーションに根ざした物語コヒーレンス評価フレームワークである。
本稿では,生成した物語要約におけるコヒーレンスエラーの分類法を開発し,150冊の本や映画の脚本要約にまたがる6.6k文のスパンレベルアノテーションを収集する。
我々の研究は、最先端の要約モデルによって生成されるコヒーレンスエラーの最初の特徴と、群衆アノテータからコヒーレンス判断を引き出すためのプロトコルを提供する。
論文 参考訳(メタデータ) (2022-05-19T16:01:47Z) - AgreeSum: Agreement-Oriented Multi-Document Summarization [3.4743618614284113]
記事の集合が与えられた場合、ゴールはすべての入力記事に共通かつ忠実な情報を表す抽象的な要約を提供することである。
我々は、AgreeSumのデータセットを作成し、データセット内のクラスタのサブセットについて、記事の要約関係に関するアノテーションを提供します。
論文 参考訳(メタデータ) (2021-06-04T06:17:49Z) - Relation Clustering in Narrative Knowledge Graphs [71.98234178455398]
原文内の関係文は(SBERTと)埋め込み、意味論的に類似した関係をまとめるためにクラスタ化される。
予備的なテストでは、そのようなクラスタリングが類似した関係を検知し、半教師付きアプローチのための貴重な前処理を提供することが示されている。
論文 参考訳(メタデータ) (2020-11-27T10:43:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。