Digital twins to alleviate the need for real field data in vision-based vehicle speed detection systems
- URL: http://arxiv.org/abs/2407.08380v1
- Date: Thu, 11 Jul 2024 10:41:20 GMT
- Title: Digital twins to alleviate the need for real field data in vision-based vehicle speed detection systems
- Authors: Antonio Hernández Martínez, Iván García Daza, Carlos Fernández López, David Fernández Llorca,
- Abstract summary: Accurate vision-based speed estimation is more cost-effective than traditional methods based on radar or LiDAR.
Deep learning approaches are very limited in this context due to the lack of available data.
In this work, we propose the use of digital-twins using CARLA simulator to generate a large dataset representative of a specific real-world camera.
- Score: 0.9899633398596672
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate vision-based speed estimation is much more cost-effective than traditional methods based on radar or LiDAR. However, it is also challenging due to the limitations of perspective projection on a discrete sensor, as well as the high sensitivity to calibration, lighting and weather conditions. Interestingly, deep learning approaches (which dominate the field of computer vision) are very limited in this context due to the lack of available data. Indeed, obtaining video sequences of real road traffic with accurate speed values associated with each vehicle is very complex and costly, and the number of available datasets is very limited. Recently, some approaches are focusing on the use of synthetic data. However, it is still unclear how models trained on synthetic data can be effectively applied to real world conditions. In this work, we propose the use of digital-twins using CARLA simulator to generate a large dataset representative of a specific real-world camera. The synthetic dataset contains a large variability of vehicle types, colours, speeds, lighting and weather conditions. A 3D CNN model is trained on the digital twin and tested on the real sequences. Unlike previous approaches that generate multi-camera sequences, we found that the gap between the the real and the virtual conditions is a key factor in obtaining low speed estimation errors. Even with a preliminary approach, the mean absolute error obtained remains below 3km/h.
Related papers
- SplatAD: Real-Time Lidar and Camera Rendering with 3D Gaussian Splatting for Autonomous Driving [6.221538885604869]
Existing neural radiance field (NeRF) methods for sensor-realistic rendering of camera and lidar data suffer from low rendering speeds.
We propose SplatAD, the first 3DGS-based method for realistic, real-time rendering of dynamic scenes for both camera and lidar data.
arXiv Detail & Related papers (2024-11-25T16:18:22Z) - SCOPE: A Synthetic Multi-Modal Dataset for Collective Perception Including Physical-Correct Weather Conditions [0.5026434955540995]
SCOPE is the first synthetic multi-modal dataset that incorporates realistic camera and LiDAR models as well as parameterized and physically accurate weather simulations.
The dataset contains 17,600 frames from over 40 diverse scenarios with up to 24 collaborative agents, infrastructure sensors, and passive traffic, including cyclists and pedestrians.
arXiv Detail & Related papers (2024-08-06T09:35:50Z) - SCaRL- A Synthetic Multi-Modal Dataset for Autonomous Driving [0.0]
We present a novel synthetically generated multi-modal dataset, SCaRL, to enable the training and validation of autonomous driving solutions.
SCaRL is a large dataset based on the CARLA Simulator, which provides data for diverse, dynamic scenarios and traffic conditions.
arXiv Detail & Related papers (2024-05-27T10:31:26Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Towards view-invariant vehicle speed detection from driving simulator
images [0.31498833540989407]
We address the question of whether complex 3D-CNN architectures are capable of implicitly learning view-invariant speeds using a single model.
The results are very promising as they show that a single model with data from multiple views reports even better accuracy than camera-specific models.
arXiv Detail & Related papers (2022-06-01T09:14:45Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - Vision in adverse weather: Augmentation using CycleGANs with various
object detectors for robust perception in autonomous racing [70.16043883381677]
In autonomous racing, the weather can change abruptly, causing significant degradation in perception, resulting in ineffective manoeuvres.
In order to improve detection in adverse weather, deep-learning-based models typically require extensive datasets captured in such conditions.
We introduce an approach of using synthesised adverse condition datasets in autonomous racing (generated using CycleGAN) to improve the performance of four out of five state-of-the-art detectors.
arXiv Detail & Related papers (2022-01-10T10:02:40Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
We look at the problem of estimating the velocity of road vehicles from a camera mounted on a moving car.
We propose a two-step approach where first an off-the-shelf tracker is used to extract vehicle bounding boxes and then a small neural network is used to regress the vehicle velocity.
arXiv Detail & Related papers (2021-09-16T13:10:27Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Data-driven vehicle speed detection from synthetic driving simulator
images [0.440401067183266]
We explore the use of synthetic images generated from a driving simulator to address vehicle speed detection.
We generate thousands of images with variability corresponding to multiple speeds, different vehicle types and colors, and lighting and weather conditions.
Two different approaches to map the sequence of images to an output speed (regression) are studied, including CNN-GRU and 3D-CNN.
arXiv Detail & Related papers (2021-04-20T11:26:13Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
We propose a method to generate artificial traffic-related training data for deep traffic light detectors.
This data is generated using basic non-realistic computer graphics to blend fake traffic scenes on top of arbitrary image backgrounds.
It also tackles the intrinsic data imbalance problem in traffic light datasets, caused mainly by the low amount of samples of the yellow state.
arXiv Detail & Related papers (2020-11-07T19:57:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.