Floquet Schrieffer-Wolff transform based on Sylvester equations
- URL: http://arxiv.org/abs/2407.08405v4
- Date: Fri, 24 Jan 2025 08:22:42 GMT
- Title: Floquet Schrieffer-Wolff transform based on Sylvester equations
- Authors: Xiao Wang, Fabio Pablo Miguel Méndez-Córdoba, Dieter Jaksch, Frank Schlawin,
- Abstract summary: We present a Floquet Schrieffer Wolff transform (FSWT) to obtain effective Floquet Hamiltonians and micro-motion operators of periodically driven many-body systems.
We anticipate this method will be useful for designing Rydberg multi-qubit gates, controlling correlated hopping in quantum simulations in optical lattices, and describing multi-orbital and long-range interacting systems driven in-gap.
- Score: 4.58527340094927
- License:
- Abstract: We present a Floquet Schrieffer Wolff transform (FSWT) to obtain effective Floquet Hamiltonians and micro-motion operators of periodically driven many-body systems for any non-resonant driving frequency. The FSWT perturbatively eliminates the oscillatory components in the driven Hamiltonian by solving operator-valued Sylvester equations with systematic approximations. It goes beyond various high-frequency expansion methods commonly used in Floquet theory, as we demonstrate with the example of the driven Fermi-Hubbard model. In the limit of high driving frequencies, the FSWT Hamiltonian reduces to the widely used Floquet-Magnus result. We anticipate this method will be useful for designing Rydberg multi-qubit gates, controlling correlated hopping in quantum simulations in optical lattices, and describing multi-orbital and long-range interacting systems driven in-gap.
Related papers
- Frozonium: Freezing Anharmonicity in Floquet Superconducting Circuits [0.9660179680180351]
Floquet engineering is a powerful method that can be used to modify the properties of interacting many-body Hamiltonians.
We consider the physics of an inductively shunted superconducting Josephson junction in the presence of Floquet drives.
arXiv Detail & Related papers (2025-01-17T19:00:00Z) - Perturbative Framework for Engineering Arbitrary Floquet Hamiltonian [0.0]
We develop a systematic perturbative framework to engineer an arbitrary target Hamiltonian in the Floquet phase space.
The high-order errors in the engineered Floquet Hamiltonian are mitigated by adding high-order driving potentials perturbatively.
arXiv Detail & Related papers (2024-10-14T12:58:55Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Counterdiabatic Driving for Periodically Driven Systems [0.0]
Periodically driven systems have emerged as a useful technique to engineer the properties of quantum systems.
We develop a technique to capture nonperturbative photon resonances and obtain high-fidelity protocols.
arXiv Detail & Related papers (2023-10-04T11:08:19Z) - Fractional Floquet theory [91.3755431537592]
The fractional Floquet theorem (fFT) is formulated in the form of the Mittag-Leffler function.
The formula makes it possible to reduce the FTSE to the standard quantum mechanics with the time-dependent Hamiltonian.
arXiv Detail & Related papers (2023-02-05T09:01:32Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Engineering Floquet Dynamical Quantum Phase Transition [0.0]
Floquet dynamical quantum phase transitions (FDQPTs) are signified by recurrent nonanalytic behaviors of observables in time.
We introduce a quench-free and generic approach to engineer and control FDQPTs for both pure and mixed Floquet states.
arXiv Detail & Related papers (2022-06-07T09:41:21Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - High-frequency expansions for time-periodic Lindblad generators [68.8204255655161]
Floquet engineering of isolated systems is often based on the concept of the effective time-independent Floquet Hamiltonian.
We show that the emerging non-Markovianity of the Floquet generator can entirely be attributed to the micromotion of the open driven system.
arXiv Detail & Related papers (2021-07-21T12:48:39Z) - Nonequilibrium steady states in the Floquet-Lindblad systems: van
Vleck's high-frequency expansion approach [4.726777092009554]
Nonequilibrium steady states (NESSs) in periodically driven dissipative quantum systems are vital in Floquet engineering.
We develop a general theory for high-frequency drives with Lindblad-type dissipation to characterize and analyze NESSs.
arXiv Detail & Related papers (2021-07-16T14:05:20Z) - Operator-algebraic renormalization and wavelets [62.997667081978825]
We construct the continuum free field as the scaling limit of Hamiltonian lattice systems using wavelet theory.
A renormalization group step is determined by the scaling equation identifying lattice observables with the continuum field smeared by compactly supported wavelets.
arXiv Detail & Related papers (2020-02-04T18:04:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.