Counterdiabatic Driving for Periodically Driven Systems
- URL: http://arxiv.org/abs/2310.02728v4
- Date: Tue, 22 Oct 2024 16:20:03 GMT
- Title: Counterdiabatic Driving for Periodically Driven Systems
- Authors: Paul Manuel Schindler, Marin Bukov,
- Abstract summary: Periodically driven systems have emerged as a useful technique to engineer the properties of quantum systems.
We develop a technique to capture nonperturbative photon resonances and obtain high-fidelity protocols.
- Score: 0.0
- License:
- Abstract: Periodically driven systems have emerged as a useful technique to engineer the properties of quantum systems, and are in the process of being developed into a standard toolbox for quantum simulation. An outstanding challenge that leaves this toolbox incomplete is the manipulation of the states dressed by strong periodic drives. The state-of-the-art in Floquet control is the adiabatic change of parameters. Yet, this requires long protocols conflicting with the limited coherence times in experiments. To achieve fast control of nonequilibrium quantum matter, we generalize the notion of variational counterdiabatic driving away from equilibrium focusing on Floquet systems. We derive a nonperturbative variational principle to find local approximations to the adiabatic gauge potential for the effective Floquet Hamiltonian. It enables transitionless driving of Floquet eigenstates far away from the adiabatic regime. We discuss applications to two-level, Floquet band, and interacting periodically driven models. The developed technique allows us to capture nonperturbative photon resonances and obtain high-fidelity protocols that respect experimental limitations like the locality of the accessible control terms.
Related papers
- Simultaneous symmetry breaking in spontaneous Floquet states: Floquet-Nambu-Goldstone modes, Floquet thermodynamics, and the time operator [49.1574468325115]
We study simultaneous symmetry-breaking in a spontaneous Floquet state, focusing on the specific case of an atomic condensate.
We first describe the quantization of the Nambu-Goldstone (NG) modes for a stationary state simultaneously breaking several symmetries of the Hamiltonian.
We extend the formalism to Floquet states simultaneously breaking several symmetries, where Goldstone theorem translates into the emergence of Floquet-Nambu-Goldstone modes with zero quasi-energy.
arXiv Detail & Related papers (2024-02-16T16:06:08Z) - Emergent strong zero mode through local Floquet engineering [0.0]
Floquet prethermalization and dynamical freezing of certain observables are realized by controlling the drive frequency.
These dynamical regimes can be leveraged to construct quantum memories and have potential applications in quantum information processing.
arXiv Detail & Related papers (2023-06-02T18:00:03Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Floquet States in Open Quantum Systems [0.0]
We give a detailed exposition on the formalism of quantum master equations for open Floquet systems.
We highlight recent works investigating whether equilibrium statistical mechanics applies to Floquet states.
arXiv Detail & Related papers (2022-03-30T14:36:50Z) - Following Floquet states in high-dimensional Hilbert spaces [0.0]
A strategy is proposed for following a Floquet state in response to small changes of a given system's Hamiltonian.
An iterative algorithm is established which enables one to compute individual Floquet states even for many-body systems with high-dimensional Hilbert spaces.
arXiv Detail & Related papers (2021-11-25T10:13:32Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Engineering, control and longitudinal readout of Floquet qubits [105.9098786966493]
Time-periodic Hamiltonians can be exploited to increase the dephasing time of qubits and to design protected one and two-qubit gates.
Here, we use the framework of many-mode Floquet theory to describe approaches to robustly control Floquet qubits in the presence of multiple drive tones.
Following the same approach, we introduce a longitudinal readout protocol to measure the Floquet qubit without the need of first adiabatically mapping back the Floquet states to the static qubit states.
arXiv Detail & Related papers (2021-08-25T14:35:02Z) - High-frequency expansions for time-periodic Lindblad generators [68.8204255655161]
Floquet engineering of isolated systems is often based on the concept of the effective time-independent Floquet Hamiltonian.
We show that the emerging non-Markovianity of the Floquet generator can entirely be attributed to the micromotion of the open driven system.
arXiv Detail & Related papers (2021-07-21T12:48:39Z) - Quantum Control in Open and Periodically Driven Systems [1.5948239853047765]
How to protect quantum resources under the coexistence of active control and passive decoherence is of significance.
Recent studies have revealed that the decoherence is determined by the feature of the system-environment energy spectrum.
We will review the progress on quantum control in open and periodically driven systems.
arXiv Detail & Related papers (2021-01-12T02:46:48Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Sufficient conditions for adiabaticity in open quantum systems [0.0]
We introduce sufficient conditions for the adiabatic approximation in open quantum systems.
We first illustrate our results by showing that the adiabatic approximation for open systems is compatible with the description of quantum thermodynamics at thermal equilibrium.
We also apply our sufficient conditions as a tool in quantum control, evaluating the adiabatic behavior for the Hamiltonians of both the Deutsch algorithm and the Landau-Zener model under decoherence.
arXiv Detail & Related papers (2020-07-29T22:19:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.