Unveiling the Potential of BERTopic for Multilingual Fake News Analysis -- Use Case: Covid-19
- URL: http://arxiv.org/abs/2407.08417v1
- Date: Thu, 11 Jul 2024 11:47:43 GMT
- Title: Unveiling the Potential of BERTopic for Multilingual Fake News Analysis -- Use Case: Covid-19
- Authors: Karla Schäfer, Jeong-Eun Choi, Inna Vogel, Martin Steinebach,
- Abstract summary: BERTopic consists of sentence embedding, dimension reduction, clustering, and topic extraction.
This paper aims to analyse the technical application of BERTopic in practice.
It also aims to analyse the results of topic modeling on real world data as a use case.
- Score: 0.562479170374811
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Topic modeling is frequently being used for analysing large text corpora such as news articles or social media data. BERTopic, consisting of sentence embedding, dimension reduction, clustering, and topic extraction, is the newest and currently the SOTA topic modeling method. However, current topic modeling methods have room for improvement because, as unsupervised methods, they require careful tuning and selection of hyperparameters, e.g., for dimension reduction and clustering. This paper aims to analyse the technical application of BERTopic in practice. For this purpose, it compares and selects different methods and hyperparameters for each stage of BERTopic through density based clustering validation and six different topic coherence measures. Moreover, it also aims to analyse the results of topic modeling on real world data as a use case. For this purpose, the German fake news dataset (GermanFakeNCovid) on Covid-19 was created by us and in order to experiment with topic modeling in a multilingual (English and German) setting combined with the FakeCovid dataset. With the final results, we were able to determine thematic similarities between the United States and Germany. Whereas, distinguishing the topics of fake news from India proved to be more challenging.
Related papers
- BERTopic for Topic Modeling of Hindi Short Texts: A Comparative Study [1.1650821883155187]
This study investigates the performance of BERTopic in modeling Hindi short texts.
Using contextual embeddings, BERTopic can capture semantic relationships in data, making it potentially more effective than traditional models.
arXiv Detail & Related papers (2025-01-07T14:53:35Z) - Explaining Datasets in Words: Statistical Models with Natural Language Parameters [66.69456696878842]
We introduce a family of statistical models -- including clustering, time series, and classification models -- parameterized by natural language predicates.
We apply our framework to a wide range of problems: taxonomizing user chat dialogues, characterizing how they evolve across time, finding categories where one language model is better than the other.
arXiv Detail & Related papers (2024-09-13T01:40:20Z) - Decoding Multilingual Topic Dynamics and Trend Identification through ARIMA Time Series Analysis on Social Networks: A Novel Data Translation Framework Enhanced by LDA/HDP Models [0.08246494848934444]
We focus on dialogues within Tunisian social networks during the Coronavirus Pandemic and other notable themes like sports and politics.
We start by aggregating a varied multilingual corpus of comments relevant to these subjects.
We then introduce our No-English-to-English Machine Translation approach to handle linguistic differences.
arXiv Detail & Related papers (2024-03-18T00:01:10Z) - Multilingual transformer and BERTopic for short text topic modeling: The
case of Serbian [0.0]
This paper presents the results of the first application of BERTopic, a state-of-the-art topic modeling technique, to short text written in a morphologi-cally rich language.
We applied BERTopic with three multilingual embed-ding models on two levels of text preprocessing (partial and full) to evalu-ate its performance on partially preprocessed short text in Serbian.
arXiv Detail & Related papers (2024-02-05T14:59:29Z) - Exploring the Power of Topic Modeling Techniques in Analyzing Customer
Reviews: A Comparative Analysis [0.0]
Machine learning and natural language processing algorithms have been deployed to analyze the vast amount of textual data available online.
In this study, we examine and compare five frequently used topic modeling methods specifically applied to customer reviews.
Our findings reveal that BERTopic consistently yield more meaningful extracted topics and achieve favorable results.
arXiv Detail & Related papers (2023-08-19T08:18:04Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
A problem that frequently occurs when working with a non-English language is the scarcity of annotated training data.
We design a simple but effective ensemble-based framework that combines various transfer learning techniques.
We also propose a low-cost TL method that bootstraps coreference resolution models by utilizing Wikipedia anchor texts.
arXiv Detail & Related papers (2023-01-22T18:22:55Z) - A Multi-dimensional Evaluation of Tokenizer-free Multilingual Pretrained
Models [87.7086269902562]
We show that subword-based models might still be the most practical choice in many settings.
We encourage future work in tokenizer-free methods to consider these factors when designing and evaluating new models.
arXiv Detail & Related papers (2022-10-13T15:47:09Z) - ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive
Summarization with Argument Mining [61.82562838486632]
We crowdsource four new datasets on diverse online conversation forms of news comments, discussion forums, community question answering forums, and email threads.
We benchmark state-of-the-art models on our datasets and analyze characteristics associated with the data.
arXiv Detail & Related papers (2021-06-01T22:17:13Z) - Unsupervised Graph-based Topic Modeling from Video Transcriptions [5.210353244951637]
We develop a topic extractor on video transcriptions using neural word embeddings and a graph-based clustering method.
Experimental results on the real-life multimodal data set MuSe-CaR demonstrate that our approach extracts coherent and meaningful topics.
arXiv Detail & Related papers (2021-05-04T12:48:17Z) - Transformer-based Language Model Fine-tuning Methods for COVID-19 Fake
News Detection [7.29381091750894]
We propose a novel transformer-based language model fine-tuning approach for these fake news detection.
First, the token vocabulary of individual model is expanded for the actual semantics of professional phrases.
Last, the predicted features extracted by universal language model RoBERTa and domain-specific model CT-BERT are fused by one multiple layer perception to integrate fine-grained and high-level specific representations.
arXiv Detail & Related papers (2021-01-14T09:05:42Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
Large-scale language models such as BERT have achieved state-of-the-art performance across a wide range of NLP tasks.
Recent studies show that such BERT-based models are vulnerable facing the threats of textual adversarial attacks.
We propose InfoBERT, a novel learning framework for robust fine-tuning of pre-trained language models.
arXiv Detail & Related papers (2020-10-05T20:49:26Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.