Using PT-symmetric Qubits to Break the Tradeoff Between Fidelity and the Degree of Quantum Entanglement
- URL: http://arxiv.org/abs/2407.08525v3
- Date: Tue, 1 Oct 2024 03:56:34 GMT
- Title: Using PT-symmetric Qubits to Break the Tradeoff Between Fidelity and the Degree of Quantum Entanglement
- Authors: B. -B. Liu, Shi-Lei Su, Y. -L. Zuo, Qiongyi He, Gang Chen, F. Nori, H. Jing,
- Abstract summary: A new approach can efficiently prepare multi-qubit entanglement and use not only bipartite but also tripartite entanglement.
This new approach can efficiently prepare multi-qubit entanglement and use not only bipartite but also tripartite entanglement.
- Score: 2.3303130882225185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A noteworthy discovery is that the minimal evolution time is smaller for parity-time ($\mathcal{PT}$) symmetric systems compared to Hermitian setups. Moreover, there is a significant acceleration of two-qubit quantum entanglement preparation near the exceptional point (EP), or spectral coalescence, within such system. Nevertheless, an important problem often overlooked for quantum EP-based devices is their fidelity, greatly affected by the process of dissipation or post-selection, creating an inherent trade-off relation between the degree of entanglement and fidelity. Our study demonstrates that this limitation can be effectively overcome by harnessing an active $\mathcal{PT}$-symmetric system, which possesses balanced gain and loss, enabling maximal entanglement with rapid speed, high fidelity, and greater resilience to non-resonant errors. This new approach can efficiently prepare multi-qubit entanglement and use not only bipartite but also tripartite entanglement, as illustrative examples, even when the precise gain-loss balance is not strictly maintained. Our analytical findings are in excellent agreement with numerical simulations, confirming the potential of truly $\mathcal{PT}$-devices as a powerful tool for creating and engineering diverse quantum resources for applications in quantum information technology
Related papers
- Quantum correlations enhanced in hybrid optomechanical system via phase tuning [0.0]
This work presents a theoretical framework for enhancing quantum correlations in a hybrid double-cavity optomechanical system.
We find that tuning the phase $phi$ is essential for maximizing photon-phonon entanglement.
arXiv Detail & Related papers (2024-10-13T14:11:07Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Projective Quantum Eigensolver via Adiabatically Decoupled Subsystem Evolution: a Resource Efficient Approach to Molecular Energetics in Noisy Quantum Computers [0.0]
We develop a projective formalism that aims to compute ground-state energies of molecular systems accurately using Noisy Intermediate Scale Quantum (NISQ) hardware.
We demonstrate the method's superior performance under noise while concurrently ensuring requisite accuracy in future fault-tolerant systems.
arXiv Detail & Related papers (2024-03-13T13:27:40Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Error-Mitigated Quantum Simulation of Interacting Fermions with Trapped
Ions [17.707261555353682]
probabilistic error cancellation (PEC) has been proposed as a general and systematic protocol.
PEC has been tested in two-qubit systems and a superconducting multi-qubit system.
We benchmark PEC using up to four trapped-ion qubits.
arXiv Detail & Related papers (2023-02-21T04:27:30Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
Quantum neural networks (QNNs) exert the power of modern quantum machines.
QNNs with handcraft symmetric ansatzes generally experience better trainability than those with asymmetric ansatzes.
We propose the effective quantum neural tangent kernel (EQNTK) to quantify the convergence of QNNs towards the global optima.
arXiv Detail & Related papers (2022-08-30T08:17:55Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Non-trivial symmetries in quantum landscapes and their resilience to
quantum noise [0.0]
Parametrized Quantum Circuits (PQCs) are employed in Quantum Neural Networks and Variational Quantum Algorithms.
We find an exponentially large symmetry in PQCs, yielding an exponentially large degeneracy of the minima in the cost landscape.
We introduce an optimization method called Symmetry-based Minima Hopping (SYMH), which exploits the underlying symmetries in PQCs.
arXiv Detail & Related papers (2020-11-17T16:43:05Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.