Projective Quantum Eigensolver via Adiabatically Decoupled Subsystem Evolution: a Resource Efficient Approach to Molecular Energetics in Noisy Quantum Computers
- URL: http://arxiv.org/abs/2403.08519v2
- Date: Tue, 19 Mar 2024 06:52:04 GMT
- Title: Projective Quantum Eigensolver via Adiabatically Decoupled Subsystem Evolution: a Resource Efficient Approach to Molecular Energetics in Noisy Quantum Computers
- Authors: Chayan Patra, Sonaldeep Halder, Rahul Maitra,
- Abstract summary: We develop a projective formalism that aims to compute ground-state energies of molecular systems accurately using Noisy Intermediate Scale Quantum (NISQ) hardware.
We demonstrate the method's superior performance under noise while concurrently ensuring requisite accuracy in future fault-tolerant systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computers hold immense potential in the field of chemistry, ushering new frontiers to solve complex many body problems that are beyond the reach of classical computers. However, noise in the current quantum hardware limits their applicability to large chemical systems. This work encompasses the development of a projective formalism that aims to compute ground-state energies of molecular systems accurately using Noisy Intermediate Scale Quantum (NISQ) hardware in a resource efficient manner. Our approach is reliant upon the formulation of a bipartitely decoupled parameterized ansatz within the disentangled unitary coupled cluster (dUCC) framework based on the principles of synergetics. Such decoupling emulates the total parameter optimization in a lower dimensional manifold, while a mutual synergistic relationship among the parameters is exploited to ensure characteristic accuracy. Without any pre-circuit measurements, our method leads to a highly compact fixed-depth ansatz with shallower circuits and fewer expectation value evaluations. Through analytical and numerical demonstrations, we demonstrate the method's superior performance under noise while concurrently ensuring requisite accuracy in future fault-tolerant systems. This approach enables rapid exploration of emerging chemical spaces by efficient utilization of near-term quantum hardware resources.
Related papers
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Projective Quantum Eigensolver with Generalized Operators [0.0]
We develop a methodology for determining the generalized operators in terms of a closed form residual equations in the PQE framework.
With the application on several molecular systems, we have demonstrated our ansatz achieves similar accuracy to the (disentangled) UCC with singles, doubles and triples.
arXiv Detail & Related papers (2024-10-21T15:40:22Z) - Contextual Subspace Variational Quantum Eigensolver Calculation of the Dissociation Curve of Molecular Nitrogen on a Superconducting Quantum Computer [0.06990493129893112]
We present an experimental demonstration of the Contextual Subspace Variational Quantum Eigensolver on superconducting quantum hardware.
In particular, we compute the potential energy curve for molecular nitrogen, where a dominance of static correlation in the dissociation limit proves challenging for many conventional quantum chemistry techniques.
Our quantum simulations retain good agreement with the full configuration interaction energy in the chosen STO-3G basis, outperforming all benchmarked single-reference wavefunction techniques in capturing the bond-breaking appropriately.
arXiv Detail & Related papers (2023-12-07T16:05:52Z) - Machine Learning Assisted Cognitive Construction of a Shallow Depth
Dynamic Ansatz for Noisy Quantum Hardware [0.0]
We develop a novel protocol that capitalizes on regenerative machine learning methodologies and many-body theoretic measures to construct a highly expressive and shallow ansatz.
The proposed method is highly compatible with state-of-the-art neural error mitigation techniques.
arXiv Detail & Related papers (2023-10-12T16:27:53Z) - On-the-fly Tailoring towards a Rational Ansatz Design for Digital
Quantum Simulations [0.0]
It is imperative to develop low depth quantum circuits that are physically realizable in quantum devices.
We develop a disentangled ansatz construction protocol that can dynamically tailor an optimal ansatz.
The construction of the ansatz may potentially be performed in parallel quantum architecture through energy sorting and operator commutativity prescreening.
arXiv Detail & Related papers (2023-02-07T11:22:01Z) - Quantum Embedding Method for the Simulation of Strongly Correlated
Systems on Quantum Computers [0.0]
We introduce the projection-based embedding method for combining the variational quantum eigensolver (VQE) algorithm with density functional theory (DFT)
The developed VQE-in-DFT method is then implemented efficiently on a real quantum device and employed for simulating the triple bond breaking process in butyronitrile.
The developments will benefit many different chemical areas including the computer aided drug design as well as the study of metalloenzymes with a strongly correlated fragment.
arXiv Detail & Related papers (2023-02-06T19:00:03Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.