Dunkl-Schrödinger equation with time-dependent harmonic oscillator potential
- URL: http://arxiv.org/abs/2407.08531v1
- Date: Thu, 11 Jul 2024 14:18:24 GMT
- Title: Dunkl-Schrödinger equation with time-dependent harmonic oscillator potential
- Authors: A. Benchikha, B. Khantoul, B. Hamil, B. C. Lütfüoğlu,
- Abstract summary: We determine the explicit form of the wavefunctions of one- and three-dimensional harmonic oscillators with time-dependent mass and frequency.
We derivation a parity-dependent of the invariant and auxiliary equation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, using the Lewis-Riesenfeld method, we determine the explicit form of the wavefunctions of one- and three-dimensional harmonic oscillators with time-dependent mass and frequency within the framework of the Dunkl derivative, which leads to the derivation of a parity-dependent of the invariant and auxiliary equation.
Related papers
- Time-dependent Dunkl-Pauli Oscillator [0.0]
We construct the Dunkl-Pauli Hamiltonian, which incorporates a time-varying magnetic field and a harmonic oscillator characterized by time-dependent mass and frequency.
Our findings regarding the total quantum phase factor and wave functions reveal the significant impact of Dunkl operators on quantum systems.
arXiv Detail & Related papers (2024-10-24T07:38:02Z) - Free expansion of a Gaussian wavepacket using operator manipulations [77.34726150561087]
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes.
We provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator.
As quantum instruction evolves to include more quantum information science applications, reworking this well known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.
arXiv Detail & Related papers (2023-04-28T19:20:52Z) - Real-Space, Real-Time Approach to Quantum-Electrodynamical
Time-Dependent Density Functional Theory [55.41644538483948]
The equations are solved by time propagating the wave function on a tensor product of a Fock-space and real-space grid.
Examples include the coupling strength and light frequency dependence of the energies, wave functions, optical absorption spectra, and Rabi splitting magnitudes in cavities.
arXiv Detail & Related papers (2022-09-01T18:49:51Z) - Exact Floquet solutions of quantum driven systems [1.0152838128195467]
We give out the exact Floquet solutions of wave function for three physical models.
The idea presented in this paper can be used in mathematics to solve partial differential equations.
arXiv Detail & Related papers (2022-02-02T15:15:05Z) - Intrinsic decoherence for the displaced harmonic oscillator [77.34726150561087]
We use the complete solution of the Milburn equation that describes intrinsic decoherence.
We calculate the expectation values of position quadrature, and the number operator in initial coherent and squeezed states.
arXiv Detail & Related papers (2021-12-06T03:15:43Z) - Heisenberg treatment of multiphoton pulses in waveguide QED with
time-delayed feedback [62.997667081978825]
We propose a projection onto a complete set of states in the Hilbert space to decompose the multi-time correlations into single-time matrix elements.
We consider the paradigmatic example of a two-level system that couples to a semi-infinite waveguide and interacts with quantum light pulses.
arXiv Detail & Related papers (2021-11-04T12:29:25Z) - Phase-space matrix representation of differential equations for
obtaining the energy spectrum of model quantum systems [0.0]
We develop a method to find the eigenvalues and eigenfunctions of the 1-dimensional time independent Schr"odinger equation for quantum model systems.
arXiv Detail & Related papers (2021-08-25T21:59:16Z) - Intrinsic decoherence dynamics in the three-coupled harmonic oscillators
interaction [77.34726150561087]
We give an explicit solution for the complete equation, i.e., beyond the usual second order approximation used to arrive to the Lindblad form.
arXiv Detail & Related papers (2021-08-01T02:36:23Z) - Exact solutions of the Schr\"odinger Equation with Dunkl Derivative for
the Free-Particle Spherical Waves, the Pseudo-Harmonic Oscillator and the
Mie-type Potential [0.0]
The equations for the radial and angular parts are obtained by using spherical coordinates and separation of variables.
It is shown that our results are adequately reduced to those previously reported when we remove the Dunkl derivative parameters.
arXiv Detail & Related papers (2021-03-07T21:34:20Z) - New approach to describe two coupled spins in a variable magnetic field [55.41644538483948]
We describe the evolution of two spins coupled by hyperfine interaction in an external time-dependent magnetic field.
We modify the time-dependent Schr"odinger equation through a change of representation.
The solution is highly simplified when an adiabatically varying magnetic field perturbs the system.
arXiv Detail & Related papers (2020-11-23T17:29:31Z) - Time dependent propagator for an-harmonic oscillator with quartic term
in potential [0.0]
We find the differential equation for the variable, determining the behavior of the harmonic.
We present the an-harmonic part of the result in the form of the operator function.
arXiv Detail & Related papers (2020-03-27T10:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.