The time-dependent quantum harmonic oscillator: a pedagogical approach via the Lewis-Riesenfeld dynamical invariant method
- URL: http://arxiv.org/abs/2411.12894v2
- Date: Mon, 02 Dec 2024 19:59:01 GMT
- Title: The time-dependent quantum harmonic oscillator: a pedagogical approach via the Lewis-Riesenfeld dynamical invariant method
- Authors: Stanley S. Coelho, Lucas Queiroz, Danilo T. Alves,
- Abstract summary: We discuss, with a pedagogical approach, the quantum harmonic oscillator with time-dependent frequency via the Lewis-Riesenfeld dynamical invariant method.
As examples, we solve the calculation of the transition probability associated with a harmonic oscillator which undergoes jumps in its frequency, and the analysis of the dynamics of a quantum particle in a Paul trap.
- Score: 0.0
- License:
- Abstract: In quantum mechanics courses, students often solve the Schr\"odinger equation for the harmonic oscillator with time-independent parameters. However, time-dependent quantum harmonic oscillators are relevant in modeling several problems as, for instance, the description of quantum motion of particles in traps, shortcuts to adiabaticity, as well as quantum scalar fields evolving in expanding universes. In the present paper, we discuss, with a pedagogical approach, the quantum harmonic oscillator with time-dependent frequency via the Lewis-Riesenfeld dynamical invariant method, revisiting the main steps to obtain the wave function associated with this model, and briefly discussing the relation between this oscillator and the generation of squeezed states. As examples of didactic applications of time-dependent harmonic oscillators and the Lewis-Riesenfeld method in quantum mechanics courses, we solve the following problems: the calculation of the transition probability associated with a harmonic oscillator which undergoes jumps in its frequency, and the analysis of the dynamics of a quantum particle in a Paul trap.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Time-Dependent Dunkl-Schrödinger Equation with an Angular-Dependent Potential [0.0]
The Schr"odinger equation is a fundamental equation in quantum mechanics.
Over the past decade, theoretical studies have focused on adapting the Dunkl derivative to quantum mechanical problems.
arXiv Detail & Related papers (2024-08-04T13:11:52Z) - Quadratic growth of Out-of-time ordered correlators in quantum kicked
rotor model [0.0]
We study the dynamics of Out-of-Time-Ordered Correlators (OTOCs) in quantum resonance condition for a kicked rotor model.
We find that the OTOCs of different types increase in a quadratic function of time, breaking the freezing of quantum scrambling induced by the dynamical localization under non-resonance condition.
arXiv Detail & Related papers (2024-01-19T23:17:31Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Independent-oscillator model and the quantum Langevin equation for an oscillator: A review [19.372542786476803]
A derivation of the quantum Langevin equation is outlined based on the microscopic model of the heat bath.
In the steady state, we analyze the quantum counterpart of energy equipartition theorem.
The free energy, entropy, specific heat, and third law of thermodynamics are discussed for one-dimensional quantum Brownian motion.
arXiv Detail & Related papers (2023-06-05T07:59:35Z) - Free expansion of a Gaussian wavepacket using operator manipulations [77.34726150561087]
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes.
We provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator.
As quantum instruction evolves to include more quantum information science applications, reworking this well known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.
arXiv Detail & Related papers (2023-04-28T19:20:52Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quadratic Time-dependent Quantum Harmonic Oscillator [0.0]
We present a Lie algebraic approach to a Hamiltonian class covering driven, parametric quantum harmonic oscillators.
Our unitary-transformation-based approach provides a solution to our general quadratic time-dependent quantum harmonic model.
arXiv Detail & Related papers (2022-11-23T19:50:49Z) - Quantum limit-cycles and the Rayleigh and van der Pol oscillators [0.0]
Self-oscillating systems are emerging as canonical models for driven dissipative nonequilibrium open quantum systems.
We derive an exact analytical solution for the steady-state quantum dynamics of the simplest of these models.
Our solution is a generalization to arbitrary temperature of existing solutions for very-low, or zero, temperature.
arXiv Detail & Related papers (2020-11-05T08:51:51Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.