論文の概要: ST-Mamba: Spatial-Temporal Mamba for Traffic Flow Estimation Recovery using Limited Data
- arxiv url: http://arxiv.org/abs/2407.08558v1
- Date: Thu, 11 Jul 2024 14:43:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 17:00:06.451630
- Title: ST-Mamba: Spatial-Temporal Mamba for Traffic Flow Estimation Recovery using Limited Data
- Title(参考訳): STマンバ 限られたデータを用いた交通流推定のための時空間マンバ
- Authors: Doncheng Yuan, Jianzhe Xue, Jinshan Su, Wenchao Xu, Haibo Zhou,
- Abstract要約: 交通流推定(TFE)は都市交通システムにおいて重要である。
本稿では,畳み込みニューラルネットワーク(CNN)とMambaフレームワークを組み合わせた深層学習モデルである空間時空間Mamba(ST-Mamba)を紹介する。
我々のモデルは、最小限のデータしか利用せず、広範なデータセットから得られる結果に匹敵する結果を達成することを目的としている。
- 参考スコア(独自算出の注目度): 11.003036186451762
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic flow estimation (TFE) is crucial for urban intelligent traffic systems. While traditional on-road detectors are hindered by limited coverage and high costs, cloud computing and data mining of vehicular network data, such as driving speeds and GPS coordinates, present a promising and cost-effective alternative. Furthermore, minimizing data collection can significantly reduce overhead. However, limited data can lead to inaccuracies and instability in TFE. To address this, we introduce the spatial-temporal Mamba (ST-Mamba), a deep learning model combining a convolutional neural network (CNN) with a Mamba framework. ST-Mamba is designed to enhance TFE accuracy and stability by effectively capturing the spatial-temporal patterns within traffic flow. Our model aims to achieve results comparable to those from extensive data sets while only utilizing minimal data. Simulations using real-world datasets have validated our model's ability to deliver precise and stable TFE across an urban landscape based on limited data, establishing a cost-efficient solution for TFE.
- Abstract(参考訳): 交通流推定(TFE)は都市交通システムにおいて重要である。
従来のオンロード検出器は、限られたカバレッジと高いコストで妨げられているが、クラウドコンピューティングと、運転速度やGPS座標などの車載ネットワークデータのマイニングは、有望で費用対効果の高い代替手段である。
さらに、データ収集の最小化はオーバーヘッドを大幅に削減する。
しかし、限られたデータは、TFEの不正確さと不安定性につながる可能性がある。
そこで我々は,畳み込みニューラルネットワーク(CNN)とMambaフレームワークを組み合わせた深層学習モデルである空間時空間Mamba(ST-Mamba)を紹介する。
ST-Mambaは交通流内の時空間パターンを効果的に捉えることにより、TFEの精度と安定性を向上させるように設計されている。
我々のモデルは、最小限のデータしか利用せず、広範なデータセットから得られる結果に匹敵する結果を達成することを目的としている。
実世界のデータセットを用いたシミュレーションは、限られたデータに基づいて都市景観に正確で安定したTFEを配信する我々のモデルの能力を検証し、TFEのコスト効率の高いソリューションを確立した。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Hyperdimensional Computing Empowered Federated Foundation Model over Wireless Networks for Metaverse [56.384390765357004]
本稿では,新しい基礎モデルのための統合型分割学習と超次元計算フレームワークを提案する。
この新しいアプローチは通信コスト、計算負荷、プライバシーリスクを低減し、Metaverseのリソース制約されたエッジデバイスに適している。
論文 参考訳(メタデータ) (2024-08-26T17:03:14Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Urban Traffic Forecasting with Integrated Travel Time and Data Availability in a Conformal Graph Neural Network Framework [0.6554326244334868]
最先端のモデルは、可能な限り最良の方法でデータを考えるのに苦労することが多い。
本稿では,駅間の移動時間をグラフニューラルネットワークアーキテクチャの重み付き隣接行列に組み込む新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-07-17T01:11:07Z) - Spatial-Temporal Generative AI for Traffic Flow Estimation with Sparse Data of Connected Vehicles [48.32593099620544]
交通流推定(TFE)はインテリジェント交通システムにおいて重要である。
本稿では,スパース時間生成人工知能(GAI)フレームワークを活用した,新規で費用対効果の高いTFEフレームワークを提案する。
このフレームワーク内では、条件エンコーダは初期TFE結果の時空間相関をマイニングする。
論文 参考訳(メタデータ) (2024-07-10T20:26:04Z) - ST-MambaSync: The Complement of Mamba and Transformers for Spatial-Temporal in Traffic Flow Prediction [36.89741338367832]
本稿では,変圧器技術とST-Mambaブロックを組み合わせた,革新的な交通流予測モデルST-MambaSyncを紹介する。
我々は、トランスフォーマーフレームワーク内でResNetと統合されたアテンションメカニズムであるMambaメカニズムを採用する先駆者です。
論文 参考訳(メタデータ) (2024-04-24T14:41:41Z) - ST-Mamba: Spatial-Temporal Selective State Space Model for Traffic Flow Prediction [32.44888387725925]
提案したST-Mambaモデルは,まず,グラフモデルを用いることなく交通流予測における時空間学習のパワーを活用する。
提案したST-Mambaモデルでは、計算速度が61.11%向上し、予測精度が0.67%向上した。
実世界のトラフィックデータセットを用いた実験は、textsfST-Mambaモデルがトラフィックフロー予測の新しいベンチマークを設定することを示した。
論文 参考訳(メタデータ) (2024-04-20T03:57:57Z) - Newell's theory based feature transformations for spatio-temporal
traffic prediction [0.0]
本稿では,交通流予測のための深層学習(DL)モデルのための交通流物理に基づく変換機能を提案する。
この変換は、Newellがターゲット位置におけるトラフィックフローの非混雑フィルタを組み込んだもので、モデルがシステムのより広範なダイナミクスを学習できるようにする。
私たちのフレームワークの重要な利点は、データが利用できない新しい場所に転送できることです。
論文 参考訳(メタデータ) (2023-07-12T06:31:43Z) - LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting [65.71129509623587]
道路交通予測はスマートシティのイニシアチブにおいて重要な役割を担い、ディープラーニングの力によって大きな進歩を遂げている。
しかし、現在の公開データセットで達成される有望な結果は、現実的なシナリオには適用できないかもしれない。
カリフォルニアで合計8,600のセンサーと5年間の時間カバレッジを含む、LargeSTベンチマークデータセットを紹介します。
論文 参考訳(メタデータ) (2023-06-14T05:48:36Z) - STLGRU: Spatio-Temporal Lightweight Graph GRU for Traffic Flow
Prediction [0.40964539027092917]
本稿では,交通流を正確に予測する新しい交通予測モデルSTLGRUを提案する。
提案するSTLGRUは,交通ネットワークの局所的・大域的空間的関係を効果的に捉えることができる。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2022-12-08T20:24:59Z) - Prediction of Traffic Flow via Connected Vehicles [77.11902188162458]
本稿では,交通機関が交通の流れを早期に制御し,渋滞を防止するための短期交通流予測フレームワークを提案する。
我々は,過去の流れデータと,コネクテッド・ビークル(CV)技術によって提供されるリアルタイムフィードや軌道データといった革新的な特徴に基づいて,将来の道路セグメントにおける流れを予測する。
本手法は, 流れの予測, CVが軌道に沿ったセグメントに現実的に遭遇する様々な事象の影響を組み込むことによって, 高度なモデリングを可能にすることを示す。
論文 参考訳(メタデータ) (2020-07-10T16:00:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。