MapLocNet: Coarse-to-Fine Feature Registration for Visual Re-Localization in Navigation Maps
- URL: http://arxiv.org/abs/2407.08561v1
- Date: Thu, 11 Jul 2024 14:51:18 GMT
- Title: MapLocNet: Coarse-to-Fine Feature Registration for Visual Re-Localization in Navigation Maps
- Authors: Hang Wu, Zhenghao Zhang, Siyuan Lin, Xiangru Mu, Qiang Zhao, Ming Yang, Tong Qin,
- Abstract summary: Traditional localization approaches rely on high-definition (HD) maps, which consist of precisely annotated landmarks.
We propose a novel transformer-based neural re-localization method, inspired by image registration.
Our method significantly outperforms the current state-of-the-art OrienterNet on both the nuScenes and Argoverse datasets.
- Score: 8.373285397029884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robust localization is the cornerstone of autonomous driving, especially in challenging urban environments where GPS signals suffer from multipath errors. Traditional localization approaches rely on high-definition (HD) maps, which consist of precisely annotated landmarks. However, building HD map is expensive and challenging to scale up. Given these limitations, leveraging navigation maps has emerged as a promising low-cost alternative for localization. Current approaches based on navigation maps can achieve highly accurate localization, but their complex matching strategies lead to unacceptable inference latency that fails to meet the real-time demands. To address these limitations, we propose a novel transformer-based neural re-localization method. Inspired by image registration, our approach performs a coarse-to-fine neural feature registration between navigation map and visual bird's-eye view features. Our method significantly outperforms the current state-of-the-art OrienterNet on both the nuScenes and Argoverse datasets, which is nearly 10%/20% localization accuracy and 30/16 FPS improvement on single-view and surround-view input settings, separately. We highlight that our research presents an HD-map-free localization method for autonomous driving, offering cost-effective, reliable, and scalable performance in challenging driving environments.
Related papers
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Monocular Localization with Semantics Map for Autonomous Vehicles [8.242967098897408]
We propose a novel visual semantic localization algorithm that employs stable semantic features instead of low-level texture features.
First, semantic maps are constructed offline by detecting semantic objects, such as ground markers, lane lines, and poles, using cameras or LiDAR sensors.
Online visual localization is performed through data association of semantic features and map objects.
arXiv Detail & Related papers (2024-06-06T08:12:38Z) - DETR Doesn't Need Multi-Scale or Locality Design [69.56292005230185]
This paper presents an improved DETR detector that maintains a "plain" nature.
It uses a single-scale feature map and global cross-attention calculations without specific locality constraints.
We show that two simple technologies are surprisingly effective within a plain design to compensate for the lack of multi-scale feature maps and locality constraints.
arXiv Detail & Related papers (2023-08-03T17:59:04Z) - Online Map Vectorization for Autonomous Driving: A Rasterization
Perspective [58.71769343511168]
We introduce a newization-based evaluation metric, which has superior sensitivity and is better suited to real-world autonomous driving scenarios.
We also propose MapVR (Map Vectorization via Rasterization), a novel framework that applies differentiableization to preciseized outputs and then performs geometry-aware supervision on HD maps.
arXiv Detail & Related papers (2023-06-18T08:51:14Z) - A Survey on Visual Map Localization Using LiDARs and Cameras [0.0]
We define visual map localization as a two-stage process.
At the stage of place recognition, the initial position of the vehicle in the map is determined by comparing the visual sensor output with a set of geo-tagged map regions of interest.
At the stage of map metric localization, the vehicle is tracked while it moves across the map by continuously aligning the visual sensors' output with the current area of the map that is being traversed.
arXiv Detail & Related papers (2022-08-05T20:11:18Z) - Semantic Image Alignment for Vehicle Localization [111.59616433224662]
We present a novel approach to vehicle localization in dense semantic maps using semantic segmentation from a monocular camera.
In contrast to existing visual localization approaches, the system does not require additional keypoint features, handcrafted localization landmark extractors or expensive LiDAR sensors.
arXiv Detail & Related papers (2021-10-08T14:40:15Z) - Coarse-to-fine Semantic Localization with HD Map for Autonomous Driving
in Structural Scenes [1.1024591739346292]
We propose a cost-effective vehicle localization system with HD map for autonomous driving using cameras as primary sensors.
We formulate vision-based localization as a data association problem that maps visual semantics to landmarks in HD map.
We evaluate our method on two datasets and demonstrate that the proposed approach yields promising localization results in different driving scenarios.
arXiv Detail & Related papers (2021-07-06T11:58:55Z) - Markov Localisation using Heatmap Regression and Deep Convolutional
Odometry [59.33322623437816]
We present a novel CNN-based localisation approach that can leverage modern deep learning hardware.
We create a hybrid CNN that can perform image-based localisation and odometry-based likelihood propagation within a single neural network.
arXiv Detail & Related papers (2021-06-01T10:28:49Z) - Trajectory Prediction for Autonomous Driving with Topometric Map [10.831436392239585]
State-of-the-art autonomous driving systems rely on high definition (HD) maps for localization and navigation.
We propose an end-to-end transformer networks based approach for map-less autonomous driving.
arXiv Detail & Related papers (2021-05-09T08:16:16Z) - MP3: A Unified Model to Map, Perceive, Predict and Plan [84.07678019017644]
MP3 is an end-to-end approach to mapless driving where the input is raw sensor data and a high-level command.
We show that our approach is significantly safer, more comfortable, and can follow commands better than the baselines in challenging long-term closed-loop simulations.
arXiv Detail & Related papers (2021-01-18T00:09:30Z) - Visual Localization for Autonomous Driving: Mapping the Accurate
Location in the City Maze [16.824901952766446]
We propose a novel feature voting technique for visual localization.
In our work, we craft the proposed feature voting method into three state-of-the-art visual localization networks.
Our approach can predict location robustly even in challenging inner-city settings.
arXiv Detail & Related papers (2020-08-13T03:59:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.