MP3: A Unified Model to Map, Perceive, Predict and Plan
- URL: http://arxiv.org/abs/2101.06806v1
- Date: Mon, 18 Jan 2021 00:09:30 GMT
- Title: MP3: A Unified Model to Map, Perceive, Predict and Plan
- Authors: Sergio Casas, Abbas Sadat, Raquel Urtasun
- Abstract summary: MP3 is an end-to-end approach to mapless driving where the input is raw sensor data and a high-level command.
We show that our approach is significantly safer, more comfortable, and can follow commands better than the baselines in challenging long-term closed-loop simulations.
- Score: 84.07678019017644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-definition maps (HD maps) are a key component of most modern
self-driving systems due to their valuable semantic and geometric information.
Unfortunately, building HD maps has proven hard to scale due to their cost as
well as the requirements they impose in the localization system that has to
work everywhere with centimeter-level accuracy. Being able to drive without an
HD map would be very beneficial to scale self-driving solutions as well as to
increase the failure tolerance of existing ones (e.g., if localization fails or
the map is not up-to-date). Towards this goal, we propose MP3, an end-to-end
approach to mapless driving where the input is raw sensor data and a high-level
command (e.g., turn left at the intersection). MP3 predicts intermediate
representations in the form of an online map and the current and future state
of dynamic agents, and exploits them in a novel neural motion planner to make
interpretable decisions taking into account uncertainty. We show that our
approach is significantly safer, more comfortable, and can follow commands
better than the baselines in challenging long-term closed-loop simulations, as
well as when compared to an expert driver in a large-scale real-world dataset.
Related papers
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Driving with Prior Maps: Unified Vector Prior Encoding for Autonomous Vehicle Mapping [18.97422977086127]
High-Definition Maps (HD maps) are essential for the precise navigation and decision-making of autonomous vehicles.
The online construction of HD maps using on-board sensors has emerged as a promising solution.
This paper proposes the PriorDrive framework to address these limitations by harnessing the power of prior maps.
arXiv Detail & Related papers (2024-09-09T06:17:46Z) - Augmenting Lane Perception and Topology Understanding with Standard
Definition Navigation Maps [51.24861159115138]
Standard Definition (SD) maps are more affordable and have worldwide coverage, offering a scalable alternative.
We propose a novel framework to integrate SD maps into online map prediction and propose a Transformer-based encoder, SD Map Representations from transFormers.
This enhancement consistently and significantly boosts (by up to 60%) lane detection and topology prediction on current state-of-the-art online map prediction methods.
arXiv Detail & Related papers (2023-11-07T15:42:22Z) - Online Map Vectorization for Autonomous Driving: A Rasterization
Perspective [58.71769343511168]
We introduce a newization-based evaluation metric, which has superior sensitivity and is better suited to real-world autonomous driving scenarios.
We also propose MapVR (Map Vectorization via Rasterization), a novel framework that applies differentiableization to preciseized outputs and then performs geometry-aware supervision on HD maps.
arXiv Detail & Related papers (2023-06-18T08:51:14Z) - InstaGraM: Instance-level Graph Modeling for Vectorized HD Map Learning [6.062751776009753]
We propose online HD map learning framework that detects HD map elements from onboard sensor observations.
InstaGraM, instance-level graph modeling of HD map brings accurate and fast end-to-end vectorized HD map learning.
Our proposed network outperforms previous models by up to 13.7 mAP with up to 33.8X faster time.
arXiv Detail & Related papers (2023-01-10T08:15:35Z) - HDMapNet: An Online HD Map Construction and Evaluation Framework [23.19001503634617]
HD map construction is a crucial problem for autonomous driving.
Traditional HD maps are coupled with centimeter-level accurate localization which is unreliable in many scenarios.
Online map learning is a more scalable way to provide semantic and geometry priors to self-driving vehicles.
arXiv Detail & Related papers (2021-07-13T18:06:46Z) - HDMapGen: A Hierarchical Graph Generative Model of High Definition Maps [81.86923212296863]
HD maps are maps with precise definitions of road lanes with rich semantics of the traffic rules.
There are only a small amount of real-world road topologies and geometries, which significantly limits our ability to test out the self-driving stack.
We propose HDMapGen, a hierarchical graph generation model capable of producing high-quality and diverse HD maps.
arXiv Detail & Related papers (2021-06-28T17:59:30Z) - Trajectory Prediction for Autonomous Driving with Topometric Map [10.831436392239585]
State-of-the-art autonomous driving systems rely on high definition (HD) maps for localization and navigation.
We propose an end-to-end transformer networks based approach for map-less autonomous driving.
arXiv Detail & Related papers (2021-05-09T08:16:16Z) - DAGMapper: Learning to Map by Discovering Lane Topology [84.12949740822117]
We focus on drawing the lane boundaries of complex highways with many lanes that contain topology changes due to forks and merges.
We formulate the problem as inference in a directed acyclic graphical model (DAG), where the nodes of the graph encode geometric and topological properties of the local regions of the lane boundaries.
We show the effectiveness of our approach on two major North American Highways in two different states and show high precision and recall as well as 89% correct topology.
arXiv Detail & Related papers (2020-12-22T21:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.