Tamil Language Computing: the Present and the Future
- URL: http://arxiv.org/abs/2407.08618v2
- Date: Mon, 12 Aug 2024 09:50:12 GMT
- Title: Tamil Language Computing: the Present and the Future
- Authors: Kengatharaiyer Sarveswaran,
- Abstract summary: Language computing integrates linguistics, computer science, and cognitive psychology to create meaningful human-computer interactions.
Recent advancements in deep learning have made computers more accessible and capable of independent learning and adaptation.
The paper underscores the importance of building practical applications for languages like Tamil to address everyday communication needs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper delves into the text processing aspects of Language Computing, which enables computers to understand, interpret, and generate human language. Focusing on tasks such as speech recognition, machine translation, sentiment analysis, text summarization, and language modelling, language computing integrates disciplines including linguistics, computer science, and cognitive psychology to create meaningful human-computer interactions. Recent advancements in deep learning have made computers more accessible and capable of independent learning and adaptation. In examining the landscape of language computing, the paper emphasises foundational work like encoding, where Tamil transitioned from ASCII to Unicode, enhancing digital communication. It discusses the development of computational resources, including raw data, dictionaries, glossaries, annotated data, and computational grammars, necessary for effective language processing. The challenges of linguistic annotation, the creation of treebanks, and the training of large language models are also covered, emphasising the need for high-quality, annotated data and advanced language models. The paper underscores the importance of building practical applications for languages like Tamil to address everyday communication needs, highlighting gaps in current technology. It calls for increased research collaboration, digitization of historical texts, and fostering digital usage to ensure the comprehensive development of Tamil language processing, ultimately enhancing global communication and access to digital services.
Related papers
- Deep Learning and Machine Learning -- Natural Language Processing: From Theory to Application [17.367710635990083]
We focus on natural language processing (NLP) and the role of large language models (LLMs)
This paper discusses advanced data preprocessing techniques and the use of frameworks like Hugging Face for implementing transformer-based models.
It highlights challenges such as handling multilingual data, reducing bias, and ensuring model robustness.
arXiv Detail & Related papers (2024-10-30T09:35:35Z) - Building Tamil Treebanks [0.0]
Treebanks are important linguistic resources, which are structured and annotated corpora with rich linguistic annotations.
This paper discusses the creation of Tamil treebanks using three distinct approaches: manual annotation, computational grammars, and machine learning techniques.
arXiv Detail & Related papers (2024-09-23T01:58:50Z) - Enhancing Language Learning through Technology: Introducing a New English-Azerbaijani (Arabic Script) Parallel Corpus [0.9051256541674136]
This paper introduces a pioneering English-Azerbaijani (Arabic Script) parallel corpus.
It is designed to bridge the technological gap in language learning and machine translation for under-resourced languages.
arXiv Detail & Related papers (2024-07-06T21:23:20Z) - Sanskrit Knowledge-based Systems: Annotation and Computational Tools [0.12086712057375555]
We address the challenges and opportunities in the development of knowledge systems for Sanskrit.
This research contributes to the preservation, understanding, and utilization of the rich linguistic information embodied in Sanskrit texts.
arXiv Detail & Related papers (2024-06-26T12:00:10Z) - Language Detection for Transliterated Content [0.0]
We study the widespread use of transliteration, where the English alphabet is employed to convey messages in native languages.
This paper addresses this challenge through a dataset of phone text messages in Hindi and Russian transliterated into English.
The research pioneers innovative approaches to identify and convert transliterated text.
arXiv Detail & Related papers (2024-01-09T15:40:54Z) - Towards Zero-shot Language Modeling [90.80124496312274]
We construct a neural model that is inductively biased towards learning human languages.
We infer this distribution from a sample of typologically diverse training languages.
We harness additional language-specific side information as distant supervision for held-out languages.
arXiv Detail & Related papers (2021-08-06T23:49:18Z) - Reinforced Iterative Knowledge Distillation for Cross-Lingual Named
Entity Recognition [54.92161571089808]
Cross-lingual NER transfers knowledge from rich-resource language to languages with low resources.
Existing cross-lingual NER methods do not make good use of rich unlabeled data in target languages.
We develop a novel approach based on the ideas of semi-supervised learning and reinforcement learning.
arXiv Detail & Related papers (2021-06-01T05:46:22Z) - Vokenization: Improving Language Understanding with Contextualized,
Visual-Grounded Supervision [110.66085917826648]
We develop a technique that extrapolates multimodal alignments to language-only data by contextually mapping language tokens to their related images.
"vokenization" is trained on relatively small image captioning datasets and we then apply it to generate vokens for large language corpora.
Trained with these contextually generated vokens, our visually-supervised language models show consistent improvements over self-supervised alternatives on multiple pure-language tasks.
arXiv Detail & Related papers (2020-10-14T02:11:51Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
We use singular vector canonical correlation analysis to study what kind of information is induced from each source.
We observe that our representations embed typology and strengthen correlations with language relationships.
We then take advantage of our multi-view language vector space for multilingual machine translation, where we achieve competitive overall translation accuracy.
arXiv Detail & Related papers (2020-04-30T16:25:39Z) - Meta-Transfer Learning for Code-Switched Speech Recognition [72.84247387728999]
We propose a new learning method, meta-transfer learning, to transfer learn on a code-switched speech recognition system in a low-resource setting.
Our model learns to recognize individual languages, and transfer them so as to better recognize mixed-language speech by conditioning the optimization on the code-switching data.
arXiv Detail & Related papers (2020-04-29T14:27:19Z) - Experience Grounds Language [185.73483760454454]
Language understanding research is held back by a failure to relate language to the physical world it describes and to the social interactions it facilitates.
Despite the incredible effectiveness of language processing models to tackle tasks after being trained on text alone, successful linguistic communication relies on a shared experience of the world.
arXiv Detail & Related papers (2020-04-21T16:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.