論文の概要: Latent Spaces Enable Transformer-Based Dose Prediction in Complex Radiotherapy Plans
- arxiv url: http://arxiv.org/abs/2407.08650v1
- Date: Thu, 11 Jul 2024 16:28:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 16:40:31.933879
- Title: Latent Spaces Enable Transformer-Based Dose Prediction in Complex Radiotherapy Plans
- Title(参考訳): 複雑な放射線治療計画におけるトランスフォーマーによる線量予測を可能にする潜時空間
- Authors: Edward Wang, Ryan Au, Pencilla Lang, Sarah A. Mattonen,
- Abstract要約: マルチレジオン肺SABRプランは複雑で、作成にかなりのリソースを必要とする。
肺SABR計画の線量予測のための新しい2段階潜伏変圧器フレームワーク(LDFormer)を提案する。
- 参考スコア(独自算出の注目度): 0.11249583407496219
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Evidence is accumulating in favour of using stereotactic ablative body radiotherapy (SABR) to treat multiple cancer lesions in the lung. Multi-lesion lung SABR plans are complex and require significant resources to create. In this work, we propose a novel two-stage latent transformer framework (LDFormer) for dose prediction of lung SABR plans with varying numbers of lesions. In the first stage, patient anatomical information and the dose distribution are encoded into a latent space. In the second stage, a transformer learns to predict the dose latent from the anatomical latents. Causal attention is modified to adapt to different numbers of lesions. LDFormer outperforms a state-of-the-art generative adversarial network on dose conformality in and around lesions, and the performance gap widens when considering overlapping lesions. LDFormer generates predictions of 3-D dose distributions in under 30s on consumer hardware, and has the potential to assist physicians with clinical decision making, reduce resource costs, and accelerate treatment planning.
- Abstract(参考訳): 肺に多発する癌病変を治療するために、定位的アブレーション体放射線療法(SABR)を用いると、エビデンスを蓄積する。
マルチレジオン肺SABRプランは複雑で、作成にかなりのリソースを必要とする。
本研究では,肺SABR計画の線量予測のための新しい2段階潜伏変圧器フレームワーク(LDFormer)を提案する。
第1段階では、患者解剖情報と線量分布を潜伏空間に符号化する。
第2段階では、トランスフォーマーは、解剖学的潜伏剤から潜伏剤を予測することを学ぶ。
因果性注意は、異なる数の病変に適応するように修正される。
LDFormerは、病変とその周辺における線量整合性について、最先端の対向ネットワークより優れており、重複する病変を考慮すると、性能ギャップが大きくなる。
LDFormerは、消費者ハードウェア上で30秒未満の3D線量分布の予測を生成し、臨床的な意思決定を医師に支援し、リソースコストを削減し、治療計画を加速する可能性がある。
関連論文リスト
- MD-Dose: A Diffusion Model based on the Mamba for Radiotherapy Dose
Prediction [14.18016609082685]
胸部癌に対する放射線治療用線量分布予測のための新しい拡散モデルMD-Doseを導入する。
前処理では、MD-Doseは線量分布マップにガウスノイズを加え、純粋なノイズ画像を得る。
後向きのプロセスでは、MD-Doseはマンバに基づくノイズ予測器を使用してノイズを予測し、最終的に線量分布マップを出力する。
論文 参考訳(メタデータ) (2024-03-13T12:46:36Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - Triplet-constraint Transformer with Multi-scale Refinement for Dose
Prediction in Radiotherapy [10.232397630125886]
CNNは線量マップを予測して放射線治療計画を自動化する。
現在のCNNベースの方法は、線量マップにおける顕著な線量差を無視している。
高品質な線量分布を予測するために, マルチスケール改良による三重項制約変換器 (TCtrans) を提案する。
論文 参考訳(メタデータ) (2024-02-07T04:05:29Z) - SP-DiffDose: A Conditional Diffusion Model for Radiation Dose Prediction
Based on Multi-Scale Fusion of Anatomical Structures, Guided by
SwinTransformer and Projector [14.18016609082685]
本研究では,SwinTransformerとプロジェクタSP-DiffDoseに基づく線量予測拡散モデルを提案する。
解剖学的構造と線量分布マップの直接的な相関を捉えるために、SP-DiffDoseは構造エンコーダを使用して解剖学的画像から特徴を抽出する。
SP-DiffDoseは、リスクのある臓器の線量予測分布を強化するために、ネットワークの深い層でSwinTransformerを使用して、画像のさまざまなスケールの特徴をキャプチャする。
論文 参考訳(メタデータ) (2023-12-11T08:07:41Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
カナダでは、前立腺がんは男性でもっとも一般的ながんであり、2022年のこの人口統計では、新しいがん症例の20%を占めている。
拡散強調画像(DWI)データを用いた前立腺癌診断,予後,治療計画のためのディープニューラルネットワークの開発には大きな関心が寄せられている。
本研究では,解剖学的条件制御型潜伏拡散戦略の導入により,現実的な前立腺DWIデータを生成するための潜伏拡散の有効性について検討した。
論文 参考訳(メタデータ) (2023-11-30T15:11:03Z) - Variational Autoencoders for Feature Exploration and Malignancy
Prediction of Lung Lesions [0.0]
肺がんはイギリスで21%のがん死の原因となっている。
最近の研究は、定期的なスキャンから肺がんの正確な早期診断のためのAI手法の能力を実証している。
本研究では, 変異型オートエンコーダ(VAE)の肺癌病変に対する応用について検討した。
論文 参考訳(メタデータ) (2023-11-27T11:12:33Z) - DiffDP: Radiotherapy Dose Prediction via a Diffusion Model [13.44191425264393]
がん患者の放射線線量分布を予測するための拡散型線量予測(DiffDP)モデルを提案する。
前処理では、DiffDPは小さなノイズを加えることで線量マップをガウスノイズに徐々に変換し、ノイズ予測器を訓練し、各時間ステップに付加されるノイズを予測する。
逆処理では、よく訓練されたノイズ予測器を用いて、元のガウス雑音から複数のステップでノイズを除去し、最終的に予測された線量分布マップを出力する。
論文 参考訳(メタデータ) (2023-07-19T07:25:33Z) - Validated respiratory drug deposition predictions from 2D and 3D medical
images with statistical shape models and convolutional neural networks [47.187609203210705]
患者固有の沈着モデリングのための自動計算フレームワークを開発し,検証することを目的としている。
2次元胸部X線と3次元CT画像から3次元患者の呼吸動態を生成できる画像処理手法が提案されている。
論文 参考訳(メタデータ) (2023-03-02T07:47:07Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
6大陸にわたる71の医療機関のデータを含む,これまでで最大のフェデレーテッドML研究の結果を報告する。
グリオ芽腫の稀な疾患に対する腫瘍境界自動検出装置を作製した。
当科では, 外科的に標的とした腫瘍の悪性度を高めるために, 33%の改善率を示し, 腫瘍全体に対する23%の改善率を示した。
論文 参考訳(メタデータ) (2022-04-22T17:27:00Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Simultaneous Estimation of X-ray Back-Scatter and Forward-Scatter using
Multi-Task Learning [59.17383024536595]
後方散乱は複雑な介入の際の患者(皮膚)の服用に大きく寄与する。
前方散乱放射線は投影画像のコントラストを低減し、3次元再構成でアーティファクトを導入する。
本稿では,従来の手法と学習に基づく手法を組み合わせて,検出器に到達した前方散乱を同時に推定する手法を提案する。
論文 参考訳(メタデータ) (2020-07-08T10:47:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。