論文の概要: CAD-Prompted Generative Models: A Pathway to Feasible and Novel Engineering Designs
- arxiv url: http://arxiv.org/abs/2407.08675v2
- Date: Mon, 22 Jul 2024 06:49:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 00:22:12.254292
- Title: CAD-Prompted Generative Models: A Pathway to Feasible and Novel Engineering Designs
- Title(参考訳): CADによる生成モデル:実現可能な新しい設計への道のり
- Authors: Leah Chong, Jude Rayan, Steven Dow, Ioanna Lykourentzou, Faez Ahmed,
- Abstract要約: 本稿では,実現可能なCAD画像の生成を促すことによって,設計の実現可能性を向上させる手法を提案する。
その結果、CAD画像のプロンプトは、Stable Diffusion 2.1のようなテキストから画像への変換に有効であることが示されている。
- 参考スコア(独自算出の注目度): 4.806185947218336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-image generative models have increasingly been used to assist designers during concept generation in various creative domains, such as graphic design, user interface design, and fashion design. However, their applications in engineering design remain limited due to the models' challenges in generating images of feasible designs concepts. To address this issue, this paper introduces a method that improves the design feasibility by prompting the generation with feasible CAD images. In this work, the usefulness of this method is investigated through a case study with a bike design task using an off-the-shelf text-to-image model, Stable Diffusion 2.1. A diverse set of bike designs are produced in seven different generation settings with varying CAD image prompting weights, and these designs are evaluated on their perceived feasibility and novelty. Results demonstrate that the CAD image prompting successfully helps text-to-image models like Stable Diffusion 2.1 create visibly more feasible design images. While a general tradeoff is observed between feasibility and novelty, when the prompting weight is kept low around 0.35, the design feasibility is significantly improved while its novelty remains on par with those generated by text prompts alone. The insights from this case study offer some guidelines for selecting the appropriate CAD image prompting weight for different stages of the engineering design process. When utilized effectively, our CAD image prompting method opens doors to a wider range of applications of text-to-image models in engineering design.
- Abstract(参考訳): テキストから画像への生成モデルは、グラフィックデザイン、ユーザインタフェースデザイン、ファッションデザインなど、様々なクリエイティブドメインにおけるコンセプト生成において、デザイナーを支援するためにますます使われてきた。
しかし、実用可能な設計概念のイメージを生成する上でのモデルの課題のため、エンジニアリング設計における彼らの応用は依然として限られている。
この問題に対処するために,本研究では,CAD画像の生成を促すことによって,設計の実現可能性を向上させる手法を提案する。
本研究では,本手法の有用性について,市販のテキスト・トゥ・イメージモデルであるスタブル・ディフュージョン2.1を用いて,自転車設計作業のケーススタディを通じて検討した。
異なるCAD画像が重みを誘導する7つの世代で多様な自転車デザインが作成され、これらのデザインは、その実現可能性と新規性に基づいて評価される。
その結果、CAD画像のプロンプトは、Stable Diffusion 2.1のようなテキストから画像への変換に有効であることが示されている。
実現可能性と新規性の間には一般的なトレードオフが観測されるが、プロンプト重量が0.35前後に抑えられると、その新規性はテキストプロンプトだけで生成されるものと同等に保たれつつも、設計可能性は大きく向上する。
このケーススタディから得られた知見は、エンジニアリング設計プロセスの異なる段階の重み付けを促す適切なCAD画像を選択するためのガイドラインを提供する。
本手法を有効活用すると,CAD画像プロンプト法は,工学設計におけるテキスト・ツー・イメージ・モデルの幅広い応用に扉を開くことができる。
関連論文リスト
- DiffDesign: Controllable Diffusion with Meta Prior for Efficient Interior Design Generation [25.532400438564334]
DiffDesignは、メタプリミティブを持つ制御可能な拡散モデルであり、効率的な内部設計生成を実現する。
具体的には,画像データセット上で事前学習した2次元拡散モデルの生成先行をレンダリングバックボーンとして利用する。
さらに、外観、ポーズ、サイズといったデザイン属性を横断的に制御し、視点整合性を強制する最適な転送ベースのアライメントモジュールを導入することで、デノナイジングプロセスをガイドする。
論文 参考訳(メタデータ) (2024-11-25T11:36:34Z) - Text2CAD: Text to 3D CAD Generation via Technical Drawings [45.3611544056261]
Text2CADは、生成プロセスを自動化するために調整された安定した拡散モデルを利用する新しいフレームワークである。
テキスト2CADは,高品質な3次元CADモデルに正確に変換された技術図面を効果的に生成することを示す。
論文 参考訳(メタデータ) (2024-11-09T15:12:06Z) - Bridging Design Gaps: A Parametric Data Completion Approach With Graph Guided Diffusion Models [9.900586490845694]
本研究では, グラフ注意ネットワークと表層拡散モデルを利用して, 工学設計におけるパラメトリックデータの欠落を解消する生成的計算モデルを提案する。
提案手法は従来の手法,例えばMissForest, HotDeck, PPCA, TabCSDI よりも精度と多様性に優れていた。
グラフモデルは、設計問題の鍵となるアセンブリグラフから複雑なパラメトリック相互依存性を正確にキャプチャし、インプットするのに役立つ。
論文 参考訳(メタデータ) (2024-06-17T16:03:17Z) - PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM [58.67882997399021]
本研究では,グラフィックレイアウトの自動生成のための統合フレームワークを提案する。
データ駆動方式では、レイアウトを生成するために構造化テキスト(JSONフォーマット)とビジュアルインストラクションチューニングを用いる。
我々は,ユーザのデザイン意図に基づいて編集可能なポスターを生成する自動テキスト投稿システムを開発した。
論文 参考訳(メタデータ) (2024-06-05T03:05:52Z) - Automatic Layout Planning for Visually-Rich Documents with Instruction-Following Models [81.6240188672294]
グラフィックデザインでは、プロでないユーザは、限られたスキルとリソースのために視覚的に魅力的なレイアウトを作成するのに苦労することが多い。
レイアウト計画のための新しいマルチモーダル・インストラクション・フォロー・フレームワークを導入し、視覚的要素をカスタマイズしたレイアウトに簡単に配置できるようにする。
本手法は,非専門職の設計プロセスを単純化するだけでなく,数ショット GPT-4V モデルの性能を上回り,mIoU は Crello で 12% 向上する。
論文 参考訳(メタデータ) (2024-04-23T17:58:33Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
本調査では,コンピュータ支援設計における学習手法の概要について概観する。
類似性解析と検索、2Dおよび3DCADモデル合成、点雲からのCAD生成を含む。
ベンチマークデータセットとその特性の完全なリストと、この領域の研究を推進しているオープンソースコードを提供する。
論文 参考訳(メタデータ) (2024-02-27T17:11:35Z) - Compositional Generative Inverse Design [69.22782875567547]
入力変数を設計して目的関数を最適化する逆設計は重要な問題である。
拡散モデルにより得られた学習エネルギー関数を最適化することにより、そのような逆例を避けることができることを示す。
N-body 相互作用タスクと2次元多面体設計タスクにおいて,実験時に学習した拡散モデルを構成することにより,初期状態と境界形状を設計できることを示す。
論文 参考訳(メタデータ) (2024-01-24T01:33:39Z) - PPI-NET: End-to-End Parametric Primitive Inference [24.31083483088741]
工学の応用では、線、円、弧、点を総称してプリミティブと呼ぶ。
本稿では,手書きスケッチ画像からパラメトリックプリミティブを推定するための,効率的かつ高精度なエンドツーエンド手法を提案する。
論文 参考訳(メタデータ) (2023-08-03T03:50:49Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
本稿では,条件付き変分オートエンコーダ(CVAE)による人間設計者向上のための性能駆動型設計探索フレームワークを提案する。
CVAEはスイスの歩行者橋の合成例18万件で訓練されている。
論文 参考訳(メタデータ) (2022-11-29T17:28:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。