Flex-TPU: A Flexible TPU with Runtime Reconfigurable Dataflow Architecture
- URL: http://arxiv.org/abs/2407.08700v1
- Date: Thu, 11 Jul 2024 17:33:38 GMT
- Title: Flex-TPU: A Flexible TPU with Runtime Reconfigurable Dataflow Architecture
- Authors: Mohammed Elbtity, Peyton Chandarana, Ramtin Zand,
- Abstract summary: The work herein consists of developing a reconfigurable dataflow TPU, called the Flex-TPU, which can dynamically change the dataflow per layer during run-time.
The results show that our Flex-TPU design achieves a significant performance increase of up to 2.75x compared to conventional TPU, with only minor area and power overheads.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensor processing units (TPUs) are one of the most well-known machine learning (ML) accelerators utilized at large scale in data centers as well as in tiny ML applications. TPUs offer several improvements and advantages over conventional ML accelerators, like graphical processing units (GPUs), being designed specifically to perform the multiply-accumulate (MAC) operations required in the matrix-matrix and matrix-vector multiplies extensively present throughout the execution of deep neural networks (DNNs). Such improvements include maximizing data reuse and minimizing data transfer by leveraging the temporal dataflow paradigms provided by the systolic array architecture. While this design provides a significant performance benefit, the current implementations are restricted to a single dataflow consisting of either input, output, or weight stationary architectures. This can limit the achievable performance of DNN inference and reduce the utilization of compute units. Therefore, the work herein consists of developing a reconfigurable dataflow TPU, called the Flex-TPU, which can dynamically change the dataflow per layer during run-time. Our experiments thoroughly test the viability of the Flex-TPU comparing it to conventional TPU designs across multiple well-known ML workloads. The results show that our Flex-TPU design achieves a significant performance increase of up to 2.75x compared to conventional TPU, with only minor area and power overheads.
Related papers
- FLARE: FP-Less PTQ and Low-ENOB ADC Based AMS-PiM for Error-Resilient, Fast, and Efficient Transformer Acceleration [7.37841083168521]
We propose an AMS-PiM architecture that eliminates DQ-Q processes, introduces FPU- and division-free nonlinear processing, and employs a low-ENOB-ADC-based sparse Matrix Vector multiplication technique.
RAP improves error resiliency, area/energy efficiency, and computational speed while preserving numerical stability.
arXiv Detail & Related papers (2024-11-22T05:01:35Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
This paper introduces EPS-MoE, a novel expert pipeline scheduler for MoE.
Our results demonstrate an average 21% improvement in prefill throughput over existing parallel inference methods.
arXiv Detail & Related papers (2024-10-16T05:17:49Z) - TrIM: Triangular Input Movement Systolic Array for Convolutional Neural Networks -- Part I: Dataflow and Analytical Modelling [0.0]
Convolutional Neural Networks (CNNs) are particularly susceptible to the Von Neumann bottleneck.
In this paper, we propose TrIM: a novel dataflow for Systolic Arrays based on a Triangular Input Movement.
arXiv Detail & Related papers (2024-08-02T13:15:17Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
Recent years have seen many successful applications of machine learning (ML) to facilitate fluid dynamic computations.
As simulations grow, generating new training datasets for traditional offline learning creates I/O and storage bottlenecks.
This work offers a solution by simplifying this coupling and enabling in situ training and inference on heterogeneous clusters.
arXiv Detail & Related papers (2023-06-22T14:07:54Z) - Heterogeneous Integration of In-Memory Analog Computing Architectures
with Tensor Processing Units [0.0]
This paper introduces a novel, heterogeneous, mixed-signal, and mixed-precision architecture that integrates an IMAC unit with an edge TPU to enhance mobile CNN performance.
We propose a unified learning algorithm that incorporates mixed-precision training techniques to mitigate potential accuracy drops when deploying models on the TPU-IMAC architecture.
arXiv Detail & Related papers (2023-04-18T19:44:56Z) - ParaGraph: Weighted Graph Representation for Performance Optimization of
HPC Kernels [1.304892050913381]
We introduce a new graph-based program representation for parallel applications that extends the Abstract Syntax Tree.
We evaluate our proposed representation by training a Graph Neural Network (GNN) to predict the runtime of an OpenMP code region.
Results show that our approach is indeed effective and has normalized RMSE as low as 0.004 to at most 0.01 in its runtime predictions.
arXiv Detail & Related papers (2023-04-07T05:52:59Z) - Tensor Slicing and Optimization for Multicore NPUs [2.670309629218727]
This paper proposes a compiler optimization pass for Multicore NPUs, called Slicing Optimization (TSO)
TSO identifies the best tensor slicing that minimizes execution time for a set of CNN models.
Results show that TSO is capable of identifying the best tensor slicing that minimizes execution time for a set of CNN models.
arXiv Detail & Related papers (2023-04-06T12:03:03Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - PARTIME: Scalable and Parallel Processing Over Time with Deep Neural
Networks [68.96484488899901]
We present PARTIME, a library designed to speed up neural networks whenever data is continuously streamed over time.
PARTIME starts processing each data sample at the time in which it becomes available from the stream.
Experiments are performed in order to empirically compare PARTIME with classic non-parallel neural computations in online learning.
arXiv Detail & Related papers (2022-10-17T14:49:14Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
"smart ecosystems" are being formed where sensing happens concurrently rather than standalone.
This is shifting the on-device inference paradigm towards deploying neural processing units (NPUs) at the edge.
We propose a novel early-exit scheduling that allows preemption at run time to account for the dynamicity introduced by the arrival and exiting processes.
arXiv Detail & Related papers (2022-09-27T15:04:01Z) - Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic
Circuits [99.59941892183454]
We propose Einsum Networks (EiNets), a novel implementation design for PCs.
At their core, EiNets combine a large number of arithmetic operations in a single monolithic einsum-operation.
We show that the implementation of Expectation-Maximization (EM) can be simplified for PCs, by leveraging automatic differentiation.
arXiv Detail & Related papers (2020-04-13T23:09:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.