Towards Efficient Deployment of Hybrid SNNs on Neuromorphic and Edge AI Hardware
- URL: http://arxiv.org/abs/2407.08704v1
- Date: Thu, 11 Jul 2024 17:40:39 GMT
- Title: Towards Efficient Deployment of Hybrid SNNs on Neuromorphic and Edge AI Hardware
- Authors: James Seekings, Peyton Chandarana, Mahsa Ardakani, MohammadReza Mohammadi, Ramtin Zand,
- Abstract summary: This paper explores the synergistic potential of neuromorphic and edge computing to create a versatile machine learning (ML) system tailored for processing data captured by dynamic vision sensors.
We construct and train hybrid models, blending spiking neural networks (SNNs) and artificial neural networks (ANNs) using PyTorch and Lava frameworks.
- Score: 0.493599216374976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the synergistic potential of neuromorphic and edge computing to create a versatile machine learning (ML) system tailored for processing data captured by dynamic vision sensors. We construct and train hybrid models, blending spiking neural networks (SNNs) and artificial neural networks (ANNs) using PyTorch and Lava frameworks. Our hybrid architecture integrates an SNN for temporal feature extraction and an ANN for classification. We delve into the challenges of deploying such hybrid structures on hardware. Specifically, we deploy individual components on Intel's Neuromorphic Processor Loihi (for SNN) and Jetson Nano (for ANN). We also propose an accumulator circuit to transfer data from the spiking to the non-spiking domain. Furthermore, we conduct comprehensive performance analyses of hybrid SNN-ANN models on a heterogeneous system of neuromorphic and edge AI hardware, evaluating accuracy, latency, power, and energy consumption. Our findings demonstrate that the hybrid spiking networks surpass the baseline ANN model across all metrics and outperform the baseline SNN model in accuracy and latency.
Related papers
- Scalable Mechanistic Neural Networks [52.28945097811129]
We propose an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences.
By reformulating the original Mechanistic Neural Network (MNN) we reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear.
Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources.
arXiv Detail & Related papers (2024-10-08T14:27:28Z) - A Hybrid SNN-ANN Network for Event-based Object Detection with Spatial and Temporal Attention [2.5075774828443467]
Event cameras offer high temporal resolution and dynamic range with minimal motion blur, making them promising for object detection tasks.
While Spiking Neural Networks (SNNs) are a natural match for event-based sensory data, Artificial Neural Networks (ANNs) tend to display more stable training dynamics.
We introduce the first Hybrid Attention-based SNN-ANN backbone for object detection using event cameras.
arXiv Detail & Related papers (2024-03-15T10:28:31Z) - SDiT: Spiking Diffusion Model with Transformer [1.7630597106970465]
Spiking neural networks (SNNs) have low power consumption and bio-interpretable characteristics.
We utilize transformer to replace the commonly used U-net structure in mainstream diffusion models.
It can generate higher quality images with relatively lower computational cost and shorter sampling time.
arXiv Detail & Related papers (2024-02-18T13:42:11Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency.
We contribute a full-stack toolkit for pre-processing neuromorphic datasets, building deep SNNs, optimizing their parameters, and deploying SNNs on neuromorphic chips.
arXiv Detail & Related papers (2023-10-25T13:15:17Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Fully Spiking Variational Autoencoder [66.58310094608002]
Spiking neural networks (SNNs) can be run on neuromorphic devices with ultra-high speed and ultra-low energy consumption.
In this study, we build a variational autoencoder (VAE) with SNN to enable image generation.
arXiv Detail & Related papers (2021-09-26T06:10:14Z) - Hybrid-DNNs: Hybrid Deep Neural Networks for Mixed Inputs [7.793215948514827]
We develop a general architecture of hybrid deep neural networks (HDNNs) to support mixed inputs.
New proposed networks provide great capacity in high-hierarchy feature extraction and in-depth data mining.
arXiv Detail & Related papers (2020-05-18T01:40:48Z) - SiamSNN: Siamese Spiking Neural Networks for Energy-Efficient Object
Tracking [20.595208488431766]
SiamSNN is the first deep SNN tracker that achieves short latency and low precision loss on the visual object tracking benchmarks OTB2013, VOT2016, and GOT-10k.
SiamSNN notably achieves low energy consumption and real-time on Neuromorphic chip TrueNorth.
arXiv Detail & Related papers (2020-03-17T08:49:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.