論文の概要: Local Clustering for Lung Cancer Image Classification via Sparse Solution Technique
- arxiv url: http://arxiv.org/abs/2407.08800v1
- Date: Thu, 11 Jul 2024 18:18:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 01:46:09.554552
- Title: Local Clustering for Lung Cancer Image Classification via Sparse Solution Technique
- Title(参考訳): スパースソリューション法による肺癌画像分類のための局所クラスタリング
- Authors: Jackson Hamel, Ming-Jun Lai, Zhaiming Shen, Ye Tian,
- Abstract要約: 重み付きグラフの頂点としてのイメージと,グラフのエッジとしてのイメージの対の類似性について検討する。
私たちのアプローチは、他の最先端のアプローチと比較して、はるかに効率的で、好ましくないか、等しく効果的です。
- 参考スコア(独自算出の注目度): 1.07793546088014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose to use a local clustering approach based on the sparse solution technique to study the medical image, especially the lung cancer image classification task. We view images as the vertices in a weighted graph and the similarity between a pair of images as the edges in the graph. The vertices within the same cluster can be assumed to share similar features and properties, thus making the applications of graph clustering techniques very useful for image classification. Recently, the approach based on the sparse solutions of linear systems for graph clustering has been found to identify clusters more efficiently than traditional clustering methods such as spectral clustering. We propose to use the two newly developed local clustering methods based on sparse solution of linear system for image classification. In addition, we employ a box spline-based tight-wavelet-framelet method to clean these images and help build a better adjacency matrix before clustering. The performance of our methods is shown to be very effective in classifying images. Our approach is significantly more efficient and either favorable or equally effective compared with other state-of-the-art approaches. Finally, we shall make a remark by pointing out two image deformation methods to build up more artificial image data to increase the number of labeled images.
- Abstract(参考訳): 本研究では,スパース法に基づく局所クラスタリング手法を用いて,医用画像,特に肺癌画像分類タスクについて検討する。
重み付きグラフの頂点としてのイメージと,グラフのエッジとしてのイメージの対の類似性について検討する。
同じクラスタ内の頂点は、同様の特徴や特性を共有することができるため、グラフクラスタリング技術の応用は画像分類に非常に有用である。
近年,グラフクラスタリングのための線形システムのスパース解に基づく手法が,スペクトルクラスタリングなどの従来のクラスタリング手法よりも効率的にクラスタを識別できることがわかった。
画像分類のための線形システムのスパース解に基づく2つの新しい局所クラスタリング手法を提案する。
さらに,ボックススプラインをベースとしたタイトウェーブレット・フレームレットを用いてこれらの画像のクリーニングを行い,クラスタリング前により優れた隣接行列を構築する。
本手法の性能は画像の分類に非常に有効であることが示されている。
私たちのアプローチは、他の最先端のアプローチと比較して、はるかに効率的で、好ましくないか、等しく効果的です。
最後に、ラベル付き画像の数を増やすために、さらに人工的な画像データを構築するために、2つの画像変形法を指摘し、その点について述べる。
関連論文リスト
- Patch-Based Deep Unsupervised Image Segmentation using Graph Cuts [0.0]
本稿では,従来のグラフ手法のアルゴリズム的助けを借りて,教師なし特徴抽出の進歩を橋渡しするパッチベースの教師なし画像分割戦略を提案する。
画像パッチを分類するために訓練された単純な畳み込みニューラルネットワークは、自然に最先端の完全畳み込み非教師付きピクセルレベルのセグメンタに繋がることを示す。
論文 参考訳(メタデータ) (2023-11-01T19:59:25Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - DeepCut: Unsupervised Segmentation using Graph Neural Networks
Clustering [6.447863458841379]
本研究では,従来のクラスタリング手法を置き換える軽量グラフニューラルネットワーク(GNN)を提案する。
既存の手法とは異なり、GNNはローカル画像特徴と生特徴とのペアワイズ親和性の両方を入力として取ります。
画像セグメンテーションGNNを訓練するための自己教師付き損失関数として,古典的クラスタリングの目的を定式化する方法を実証する。
論文 参考訳(メタデータ) (2022-12-12T12:31:46Z) - Improving Image Clustering through Sample Ranking and Its Application to
remote--sensing images [14.531733039462058]
本稿では,現在クラスタに属するクラスタの信頼性に基づいて,各クラスタ内のサンプルをランク付けする新しい手法を提案する。
そこで,本研究では,人口密度の密集した地域にあるか否かに基づいて,現在のクラスタに属するサンプルの確率を計算する手法を開発した。
本手法はリモートセンシング画像に効果的に適用可能であることを示す。
論文 参考訳(メタデータ) (2022-09-26T12:10:02Z) - Semantic-Enhanced Image Clustering [6.218389227248297]
本稿では,視覚言語事前学習モデルの助けを借りて,画像クラスタリングの課題について検討する。
イメージを適切なセマンティック空間にマップする方法と、イメージとセマンティック空間の両方からイメージをクラスタリングする方法は、2つの重要な問題である。
本稿では,与えられた画像を適切な意味空間にマッピングする手法を提案し,画像と意味論の関係に応じて擬似ラベルを生成する。
論文 参考訳(メタデータ) (2022-08-21T09:04:21Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - Clustering by Maximizing Mutual Information Across Views [62.21716612888669]
本稿では,共同表現学習とクラスタリングを組み合わせた画像クラスタリングのための新しいフレームワークを提案する。
提案手法は,様々な画像データセットにおける最先端の単一ステージクラスタリング手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-24T15:36:49Z) - Graph Contrastive Clustering [131.67881457114316]
本稿では,クラスタリングタスクに適用可能な新しいグラフコントラスト学習フレームワークを提案し,gcc(graph constrastive clustering)法を考案した。
特に、グラフラプラシアンに基づくコントラスト損失は、より識別的かつクラスタリングフレンドリーな特徴を学ぶために提案されている。
一方で、よりコンパクトなクラスタリング割り当てを学ぶために、グラフベースのコントラスト学習戦略が提案されている。
論文 参考訳(メタデータ) (2021-04-03T15:32:49Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
データの局所構造とグローバル構造の両方を保存するためのグラフ学習フレームワークを提案する。
本手法は, サンプルの自己表現性を利用して, 局所構造を尊重するために, 大域的構造と適応的隣接アプローチを捉える。
我々のモデルは、ある条件下でのカーネルk平均法とk平均法の組合せと等価である。
論文 参考訳(メタデータ) (2020-08-31T08:41:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。