論文の概要: Covariate Assisted Entity Ranking with Sparse Intrinsic Scores
- arxiv url: http://arxiv.org/abs/2407.08814v1
- Date: Tue, 9 Jul 2024 19:58:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 01:46:09.538686
- Title: Covariate Assisted Entity Ranking with Sparse Intrinsic Scores
- Title(参考訳): Covariate Assisted Entity Ranking with Sparse Intrinsic Scores
- Authors: Jianqing Fan, Jikai Hou, Mengxin Yu,
- Abstract要約: 我々は,新しいモデル同定条件を導入し,正規化された最大推定値の統計率について検討する。
また,本手法を潜在固有スコアを持たないモデルに対する適合性テストに適用する。
- 参考スコア(独自算出の注目度): 3.2839905453386162
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the item ranking problem with associate covariates, focusing on scenarios where the preference scores can not be fully explained by covariates, and the remaining intrinsic scores, are sparse. Specifically, we extend the pioneering Bradley-Terry-Luce (BTL) model by incorporating covariate information and considering sparse individual intrinsic scores. Our work introduces novel model identification conditions and examines the regularized penalized Maximum Likelihood Estimator (MLE) statistical rates. We then construct a debiased estimator for the penalized MLE and analyze its distributional properties. Additionally, we apply our method to the goodness-of-fit test for models with no latent intrinsic scores, namely, the covariates fully explaining the preference scores of individual items. We also offer confidence intervals for ranks. Our numerical studies lend further support to our theoretical findings, demonstrating validation for our proposed method
- Abstract(参考訳): 本稿では,共変量によって選好スコアが完全に説明できないシナリオと,残りの内在スコアがスパースであるシナリオに着目し,関連共変量を用いた項目ランキング問題に対処する。
具体的には,共変量情報を組み込んだBradley-Terry-Luce(BTL)モデルを拡張し,個々の内在スコアを疎結合に検討する。
本研究は, 新たなモデル同定条件を導入し, 正規化最大等量推定器 (MLE) の統計率について検討する。
次に, ペナル化MLEの脱バイアス推定器を構築し, その分布特性を解析する。
さらに,各項目の選好スコアを完全に説明できるような潜在固有スコアを持たないモデルに対する適合性テストに本手法を適用した。
私たちはまた、ランクの信頼区間も提供します。
我々の数値研究は、我々の理論的な発見をさらに支援し、提案手法の検証を実証する。
関連論文リスト
- Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Sample Complexity Bounds for Score-Matching: Causal Discovery and
Generative Modeling [82.36856860383291]
我々は,標準深部ReLUニューラルネットワークをトレーニングすることにより,スコア関数の正確な推定が可能であることを実証した。
スコアマッチングに基づく因果発見手法を用いて因果関係の回復の誤差率の限界を確立する。
論文 参考訳(メタデータ) (2023-10-27T13:09:56Z) - Robust Outlier Rejection for 3D Registration with Variational Bayes [70.98659381852787]
我々は、ロバストアライメントのための新しい変分非局所ネットワークベース外乱除去フレームワークを開発した。
そこで本稿では, 投票に基づく不整合探索手法を提案し, 変換推定のための高品質な仮説的不整合をクラスタリングする。
論文 参考訳(メタデータ) (2023-04-04T03:48:56Z) - Bayes Classification using an approximation to the Joint Probability
Distribution of the Attributes [1.0660480034605242]
本研究では,テストサンプルの近傍の情報を用いて条件付き確率を推定する手法を提案する。
本稿では,カリフォルニア大学アーバイン校(UCI)の機械学習リポジトリから得られた幅広いデータセットに対する提案手法の性能について述べる。
論文 参考訳(メタデータ) (2022-05-29T22:24:02Z) - Denoising Likelihood Score Matching for Conditional Score-based Data
Generation [22.751924447125955]
そこで本研究では,真の対数確率密度の勾配に合わせるために,DLSM(Denoising Likelihood Score Matching)損失という新たなトレーニング目標を提案する。
実験により,提案手法は,いくつかの重要な評価指標において,従来の手法よりも顕著に優れた性能を示した。
論文 参考訳(メタデータ) (2022-03-27T04:37:54Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
推定対象の偏りを伴わずに高い重なりを生じさせる,デコンファウンディングスコアを導入する。
分離スコアは観測データで識別可能なゼロ共分散条件を満たすことを示す。
特に,この手法が標準正規化の魅力的な代替となることを示す。
論文 参考訳(メタデータ) (2021-04-12T18:50:11Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
各サンプルに割り当てられた擬似ラベルの信頼性を推定・活用し,ノイズラベルの影響を緩和する。
不確実性に基づく最適化は大幅な改善をもたらし、ベンチマークデータセットにおける最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2020-12-16T04:09:04Z) - Probabilistic Anchor Assignment with IoU Prediction for Object Detection [9.703212439661097]
オブジェクト検出では、どのアンカーを正または負のサンプルとして割り当てるか、すなわちアンカー代入(アンカー代入)がモデルの性能に大きく影響を与えるコアプロシージャとして明らかにされている。
本稿では,モデルの学習状況に応じて,アンカーを正と負のサンプルに適応的に分離する新しいアンカー代入戦略を提案する。
論文 参考訳(メタデータ) (2020-07-16T04:26:57Z) - Robust Bayesian Classification Using an Optimistic Score Ratio [18.047694351309204]
クラス条件、文脈、分布に関する情報が限られている場合に、楽観的なスコア比を頑健なバイナリ分類に使用します。
楽観的なスコアは、テストサンプルの観察結果を説明するのに最も有効な分布を探索する。
論文 参考訳(メタデータ) (2020-07-08T22:25:29Z) - Nonparametric Score Estimators [49.42469547970041]
未知分布によって生成されたサンプルの集合からスコアを推定することは確率モデルの推論と学習における基本的なタスクである。
正規化非パラメトリック回帰の枠組みの下で、これらの推定器の統一的なビューを提供する。
カールフリーカーネルと高速収束による計算効果を享受する反復正規化に基づくスコア推定器を提案する。
論文 参考訳(メタデータ) (2020-05-20T15:01:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。