TractGraphFormer: Anatomically Informed Hybrid Graph CNN-Transformer Network for Classification from Diffusion MRI Tractography
- URL: http://arxiv.org/abs/2407.08883v1
- Date: Thu, 11 Jul 2024 22:14:57 GMT
- Title: TractGraphFormer: Anatomically Informed Hybrid Graph CNN-Transformer Network for Classification from Diffusion MRI Tractography
- Authors: Yuqian Chen, Fan Zhang, Meng Wang, Leo R. Zekelman, Suheyla Cetin-Karayumak, Tengfei Xue, Chaoyi Zhang, Yang Song, Nikos Makris, Yogesh Rathi, Weidong Cai, Lauren J. O'Donnell,
- Abstract summary: We introduce TractGraphFormer, a hybrid Graph CNN-Transformer deep learning framework tailored for diffusion MRI tractography.
This model leverages local anatomical characteristics and global feature dependencies of white matter structures.
In sex prediction tests, TractGraphFormer shows strong performance in large datasets of children and young adults.
- Score: 20.096952203108394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The relationship between brain connections and non-imaging phenotypes is increasingly studied using deep neural networks. However, the local and global properties of the brain's white matter networks are often overlooked in convolutional network design. We introduce TractGraphFormer, a hybrid Graph CNN-Transformer deep learning framework tailored for diffusion MRI tractography. This model leverages local anatomical characteristics and global feature dependencies of white matter structures. The Graph CNN module captures white matter geometry and grey matter connectivity to aggregate local features from anatomically similar white matter connections, while the Transformer module uses self-attention to enhance global information learning. Additionally, TractGraphFormer includes an attention module for interpreting predictive white matter connections. In sex prediction tests, TractGraphFormer shows strong performance in large datasets of children (n=9345) and young adults (n=1065). Overall, our approach suggests that widespread connections in the WM are predictive of the sex of an individual, and consistent predictive anatomical tracts are identified across the two datasets. The proposed approach highlights the potential of integrating local anatomical information and global feature dependencies to improve prediction performance in machine learning with diffusion MRI tractography.
Related papers
- Compact & Capable: Harnessing Graph Neural Networks and Edge Convolution
for Medical Image Classification [0.0]
We introduce a novel model that combines GNNs and edge convolution, leveraging the interconnectedness of RGB channel feature values to strongly represent connections between crucial graph nodes.
Our proposed model performs on par with state-of-the-art Deep Neural Networks (DNNs) but does so with 1000 times fewer parameters, resulting in reduced training time and data requirements.
arXiv Detail & Related papers (2023-07-24T13:39:21Z) - Language Knowledge-Assisted Representation Learning for Skeleton-Based
Action Recognition [71.35205097460124]
How humans understand and recognize the actions of others is a complex neuroscientific problem.
LA-GCN proposes a graph convolution network using large-scale language models (LLM) knowledge assistance.
arXiv Detail & Related papers (2023-05-21T08:29:16Z) - TractGraphCNN: anatomically informed graph CNN for classification using
diffusion MRI tractography [21.929440352687458]
We propose TractGraphCNN, a novel, anatomically informed graph CNN framework for machine learning tasks.
Results in a sex prediction testbed task demonstrate strong performance of TractGraphCNN in two large datasets.
This work shows the potential of incorporating anatomical information, especially known anatomical similarities between input features, to guide convolutions in neural networks.
arXiv Detail & Related papers (2023-01-05T05:00:03Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - How GNNs Facilitate CNNs in Mining Geometric Information from
Large-Scale Medical Images [2.2699159408903484]
We propose a fusion framework for enhancing the global image-level representation captured by convolutional neural networks (CNNs)
We evaluate our fusion strategies on histology datasets curated from large patient cohorts of colorectal and gastric cancers.
arXiv Detail & Related papers (2022-06-15T15:27:48Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
Graphs are a powerful tool for representing and analyzing unstructured, non-Euclidean data ubiquitous in the healthcare domain.
Recent works have shown that considering relationships between input data samples have a positive regularizing effect for the downstream task.
We propose Graph-in-Graph (GiG), a neural network architecture for protein classification and brain imaging applications.
arXiv Detail & Related papers (2022-04-01T10:01:37Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - FedNI: Federated Graph Learning with Network Inpainting for
Population-Based Disease Prediction [20.425551938050525]
In medical applications, Graph Convolutional Neural Networks (GCNs) are widely used for graph analysis.
GCNs rely on a vast amount of data, which is challenging to collect for a single medical institution.
We propose a framework, FedNI, to leverage network inpainting and inter-institutional data via Federated Learning (FL)
arXiv Detail & Related papers (2021-12-19T15:11:37Z) - A Few-shot Learning Graph Multi-Trajectory Evolution Network for
Forecasting Multimodal Baby Connectivity Development from a Baseline
Timepoint [53.73316520733503]
We propose a Graph Multi-Trajectory Evolution Network (GmTE-Net), which adopts a teacher-student paradigm.
This is the first teacher-student architecture tailored for brain graph multi-trajectory growth prediction.
arXiv Detail & Related papers (2021-10-06T08:26:57Z) - Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling [0.0]
We propose a dynamic adaptivetemporal graph convolution (DASTGCN) model to overcome the shortcomings of pre-defined static correlation-based graph structures.
The proposed approach allows end-to-end inference of dynamic connections between brain regions via layer-wise graph structure learning module.
We evaluate our pipeline on the UKBiobank for age and gender classification tasks from resting-state functional scans.
arXiv Detail & Related papers (2021-09-26T07:19:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.