LightenDiffusion: Unsupervised Low-Light Image Enhancement with Latent-Retinex Diffusion Models
- URL: http://arxiv.org/abs/2407.08939v1
- Date: Fri, 12 Jul 2024 02:54:43 GMT
- Title: LightenDiffusion: Unsupervised Low-Light Image Enhancement with Latent-Retinex Diffusion Models
- Authors: Hai Jiang, Ao Luo, Xiaohong Liu, Songchen Han, Shuaicheng Liu,
- Abstract summary: We propose a diffusion-based unsupervised framework that incorporates physically explainable Retinex theory with diffusion models for low-light image enhancement.
Experiments on publicly available real-world benchmarks show that the proposed LightenDiffusion outperforms state-of-the-art unsupervised competitors.
- Score: 39.28266945709169
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a diffusion-based unsupervised framework that incorporates physically explainable Retinex theory with diffusion models for low-light image enhancement, named LightenDiffusion. Specifically, we present a content-transfer decomposition network that performs Retinex decomposition within the latent space instead of image space as in previous approaches, enabling the encoded features of unpaired low-light and normal-light images to be decomposed into content-rich reflectance maps and content-free illumination maps. Subsequently, the reflectance map of the low-light image and the illumination map of the normal-light image are taken as input to the diffusion model for unsupervised restoration with the guidance of the low-light feature, where a self-constrained consistency loss is further proposed to eliminate the interference of normal-light content on the restored results to improve overall visual quality. Extensive experiments on publicly available real-world benchmarks show that the proposed LightenDiffusion outperforms state-of-the-art unsupervised competitors and is comparable to supervised methods while being more generalizable to various scenes. Our code is available at https://github.com/JianghaiSCU/LightenDiffusion.
Related papers
- Retinex-Diffusion: On Controlling Illumination Conditions in Diffusion Models via Retinex Theory [19.205929427075965]
We conceptualize the diffusion model as a black-box image render and strategically decompose its energy function in alignment with the image formation model.
It generates images with realistic illumination effects, including cast shadow, soft shadow, and inter-reflections.
arXiv Detail & Related papers (2024-07-29T03:15:07Z) - Zero-LED: Zero-Reference Lighting Estimation Diffusion Model for Low-Light Image Enhancement [2.9873893715462185]
We propose a novel zero-reference lighting estimation diffusion model for low-light image enhancement called Zero-LED.
It utilizes the stable convergence ability of diffusion models to bridge the gap between low-light domains and real normal-light domains.
It successfully alleviates the dependence on pairwise training data via zero-reference learning.
arXiv Detail & Related papers (2024-03-05T11:39:17Z) - Global Structure-Aware Diffusion Process for Low-Light Image Enhancement [64.69154776202694]
This paper studies a diffusion-based framework to address the low-light image enhancement problem.
We advocate for the regularization of its inherent ODE-trajectory.
Experimental evaluations reveal that the proposed framework attains distinguished performance in low-light enhancement.
arXiv Detail & Related papers (2023-10-26T17:01:52Z) - Diff-Retinex: Rethinking Low-light Image Enhancement with A Generative
Diffusion Model [28.762205397922294]
We propose a physically explainable and generative diffusion model for low-light image enhancement, termed as Diff-Retinex.
In the Retinex decomposition, we integrate the superiority of attention in Transformer to decompose the image into illumination and reflectance maps.
Then, we design multi-path generative diffusion networks to reconstruct the normal-light Retinex probability distribution and solve the various degradations in these components respectively.
arXiv Detail & Related papers (2023-08-25T04:03:41Z) - LLDiffusion: Learning Degradation Representations in Diffusion Models
for Low-Light Image Enhancement [118.83316133601319]
Current deep learning methods for low-light image enhancement (LLIE) typically rely on pixel-wise mapping learned from paired data.
We propose a degradation-aware learning scheme for LLIE using diffusion models, which effectively integrates degradation and image priors into the diffusion process.
arXiv Detail & Related papers (2023-07-27T07:22:51Z) - Retinexformer: One-stage Retinex-based Transformer for Low-light Image
Enhancement [96.09255345336639]
We formulate a principled One-stage Retinex-based Framework (ORF) to enhance low-light images.
ORF first estimates the illumination information to light up the low-light image and then restores the corruption to produce the enhanced image.
Our algorithm, Retinexformer, significantly outperforms state-of-the-art methods on thirteen benchmarks.
arXiv Detail & Related papers (2023-03-12T16:54:08Z) - Unsupervised Low-Light Image Enhancement via Histogram Equalization
Prior [40.61944814314655]
We propose an unsupervised low-light image enhancement method based on an effective prior histogram termed equalization prior (HEP)
We introduce a Noise Disentanglement Module (NDM) to disentangle the noise and content in the reflectance maps with the reliable aid of unpaired clean images.
Our method performs favorably against the state-of-the-art unsupervised low-light enhancement algorithms and even matches the state-of-the-art supervised algorithms.
arXiv Detail & Related papers (2021-12-03T07:51:08Z) - Low-Light Image Enhancement with Normalizing Flow [92.52290821418778]
In this paper, we investigate to model this one-to-many relationship via a proposed normalizing flow model.
An invertible network that takes the low-light images/features as the condition and learns to map the distribution of normally exposed images into a Gaussian distribution.
The experimental results on the existing benchmark datasets show our method achieves better quantitative and qualitative results, obtaining better-exposed illumination, less noise and artifact, and richer colors.
arXiv Detail & Related papers (2021-09-13T12:45:08Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.