Zero-LED: Zero-Reference Lighting Estimation Diffusion Model for Low-Light Image Enhancement
- URL: http://arxiv.org/abs/2403.02879v2
- Date: Tue, 9 Jul 2024 08:33:07 GMT
- Title: Zero-LED: Zero-Reference Lighting Estimation Diffusion Model for Low-Light Image Enhancement
- Authors: Jinhong He, Minglong Xue, Aoxiang Ning, Chengyun Song,
- Abstract summary: We propose a novel zero-reference lighting estimation diffusion model for low-light image enhancement called Zero-LED.
It utilizes the stable convergence ability of diffusion models to bridge the gap between low-light domains and real normal-light domains.
It successfully alleviates the dependence on pairwise training data via zero-reference learning.
- Score: 2.9873893715462185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion model-based low-light image enhancement methods rely heavily on paired training data, leading to limited extensive application. Meanwhile, existing unsupervised methods lack effective bridging capabilities for unknown degradation. To address these limitations, we propose a novel zero-reference lighting estimation diffusion model for low-light image enhancement called Zero-LED. It utilizes the stable convergence ability of diffusion models to bridge the gap between low-light domains and real normal-light domains and successfully alleviates the dependence on pairwise training data via zero-reference learning. Specifically, we first design the initial optimization network to preprocess the input image and implement bidirectional constraints between the diffusion model and the initial optimization network through multiple objective functions. Subsequently, the degradation factors of the real-world scene are optimized iteratively to achieve effective light enhancement. In addition, we explore a frequency-domain based and semantically guided appearance reconstruction module that encourages feature alignment of the recovered image at a fine-grained level and satisfies subjective expectations. Finally, extensive experiments demonstrate the superiority of our approach to other state-of-the-art methods and more significant generalization capabilities. We will open the source code upon acceptance of the paper.
Related papers
- Unsupervised Low-light Image Enhancement with Lookup Tables and Diffusion Priors [38.96909959677438]
Low-light image enhancement (LIE) aims at precisely and efficiently recovering an image degraded in poor illumination environments.
Recent advanced LIE techniques are using deep neural networks, which require lots of low-normal light image pairs, network parameters, and computational resources.
We devise a novel unsupervised LIE framework based on diffusion priors and lookup tables to achieve efficient low-light image recovery.
arXiv Detail & Related papers (2024-09-27T16:37:27Z) - Global Structure-Aware Diffusion Process for Low-Light Image Enhancement [64.69154776202694]
This paper studies a diffusion-based framework to address the low-light image enhancement problem.
We advocate for the regularization of its inherent ODE-trajectory.
Experimental evaluations reveal that the proposed framework attains distinguished performance in low-light enhancement.
arXiv Detail & Related papers (2023-10-26T17:01:52Z) - DiffLLE: Diffusion-guided Domain Calibration for Unsupervised Low-light
Image Enhancement [21.356254176992937]
Existing unsupervised low-light image enhancement methods lack enough effectiveness and generalization in practical applications.
We develop Diffusion-based domain calibration to realize more robust and effective unsupervised Low-Light Enhancement, called DiffLLE.
Our approach even outperforms some supervised methods by using only a simple unsupervised baseline.
arXiv Detail & Related papers (2023-08-18T03:40:40Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
This paper presents the deep compensation network unfolding (DCUNet) for restoring light field (LF) images captured under low-light conditions.
The framework uses the intermediate enhanced result to estimate the illumination map, which is then employed in the unfolding process to produce a new enhanced result.
To properly leverage the unique characteristics of LF images, this paper proposes a pseudo-explicit feature interaction module.
arXiv Detail & Related papers (2023-08-10T07:53:06Z) - Dual Degradation-Inspired Deep Unfolding Network for Low-Light Image
Enhancement [3.4929041108486185]
We propose a Dual degrAdation-inSpired deep Unfolding network, termed DASUNet, for low-light image enhancement.
It learns two distinct image priors via considering degradation specificity between luminance and chrominance spaces.
Our source code and pretrained model will be publicly available.
arXiv Detail & Related papers (2023-08-05T03:07:11Z) - LLDiffusion: Learning Degradation Representations in Diffusion Models
for Low-Light Image Enhancement [118.83316133601319]
Current deep learning methods for low-light image enhancement (LLIE) typically rely on pixel-wise mapping learned from paired data.
We propose a degradation-aware learning scheme for LLIE using diffusion models, which effectively integrates degradation and image priors into the diffusion process.
arXiv Detail & Related papers (2023-07-27T07:22:51Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
TensoIR is a novel inverse rendering approach based on tensor factorization and neural fields.
TensoRF is a state-of-the-art approach for radiance field modeling.
arXiv Detail & Related papers (2023-04-24T21:39:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.