PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning
- URL: http://arxiv.org/abs/2407.08954v1
- Date: Fri, 12 Jul 2024 03:18:08 GMT
- Title: PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning
- Authors: Sizai Hou, Songze Li, Tayyebeh Jahani-Nezhad, Giuseppe Caire,
- Abstract summary: Federated learning (FL) has recently gained significant momentum due to its potential to leverage large-scale distributed user data.
The transmitted model updates can potentially leak sensitive user information, and the lack of central control of the local training process leaves the global model susceptible to malicious manipulations on model updates.
We develop a general framework PriRoAgg, utilizing Lagrange coded computing and distributed zero-knowledge proof, to execute a wide range of robust aggregation algorithms while satisfying aggregated privacy.
- Score: 49.916365792036636
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) has recently gained significant momentum due to its potential to leverage large-scale distributed user data while preserving user privacy. However, the typical paradigm of FL faces challenges of both privacy and robustness: the transmitted model updates can potentially leak sensitive user information, and the lack of central control of the local training process leaves the global model susceptible to malicious manipulations on model updates. Current solutions attempting to address both problems under the one-server FL setting fall short in the following aspects: 1) designed for simple validity checks that are insufficient against advanced attacks (e.g., checking norm of individual update); and 2) partial privacy leakage for more complicated robust aggregation algorithms (e.g., distances between model updates are leaked for multi-Krum). In this work, we formalize a novel security notion of aggregated privacy that characterizes the minimum amount of user information, in the form of some aggregated statistics of users' updates, that is necessary to be revealed to accomplish more advanced robust aggregation. We develop a general framework PriRoAgg, utilizing Lagrange coded computing and distributed zero-knowledge proof, to execute a wide range of robust aggregation algorithms while satisfying aggregated privacy. As concrete instantiations of PriRoAgg, we construct two secure and robust protocols based on state-of-the-art robust algorithms, for which we provide full theoretical analyses on security and complexity. Extensive experiments are conducted for these protocols, demonstrating their robustness against various model integrity attacks, and their efficiency advantages over baselines.
Related papers
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Immersion and Invariance-based Coding for Privacy-Preserving Federated
Learning [1.5989047000011911]
Federated learning (FL) has emerged as a method to preserve privacy in collaborative distributed learning.
We introduce a privacy-preserving FL framework that combines differential privacy and system immersion tools from control theory.
We demonstrate that the proposed privacy-preserving scheme can be tailored to offer any desired level of differential privacy for both local and global model parameters.
arXiv Detail & Related papers (2024-09-25T15:04:42Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
In this paper, we unveil a new vulnerability: the privacy backdoor attack.
When a victim fine-tunes a backdoored model, their training data will be leaked at a significantly higher rate than if they had fine-tuned a typical model.
Our findings highlight a critical privacy concern within the machine learning community and call for a reevaluation of safety protocols in the use of open-source pre-trained models.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - Privacy-Preserving Distributed Learning for Residential Short-Term Load
Forecasting [11.185176107646956]
Power system load data can inadvertently reveal the daily routines of residential users, posing a risk to their property security.
We introduce a Markovian Switching-based distributed training framework, the convergence of which is substantiated through rigorous theoretical analysis.
Case studies employing real-world power system load data validate the efficacy of our proposed algorithm.
arXiv Detail & Related papers (2024-02-02T16:39:08Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - ScionFL: Efficient and Robust Secure Quantized Aggregation [36.668162197302365]
We introduce ScionFL, the first secure aggregation framework for federated learning.
It operates efficiently on quantized inputs and simultaneously provides robustness against malicious clients.
We show that with no overhead for clients and moderate overhead for the server, we obtain comparable accuracy for standard FL benchmarks.
arXiv Detail & Related papers (2022-10-13T21:46:55Z) - PRECAD: Privacy-Preserving and Robust Federated Learning via
Crypto-Aided Differential Privacy [14.678119872268198]
Federated Learning (FL) allows multiple participating clients to train machine learning models collaboratively by keeping their datasets local and only exchanging model updates.
Existing FL protocol designs have been shown to be vulnerable to attacks that aim to compromise data privacy and/or model robustness.
We develop a framework called PRECAD, which simultaneously achieves differential privacy (DP) and enhances robustness against model poisoning attacks with the help of cryptography.
arXiv Detail & Related papers (2021-10-22T04:08:42Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
We propose a privacy-preserving machine learning technique named Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction.
FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism.
It is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models.
arXiv Detail & Related papers (2020-03-19T13:07:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.