Privacy-Preserving Distributed Learning for Residential Short-Term Load
Forecasting
- URL: http://arxiv.org/abs/2402.01546v1
- Date: Fri, 2 Feb 2024 16:39:08 GMT
- Title: Privacy-Preserving Distributed Learning for Residential Short-Term Load
Forecasting
- Authors: Yi Dong, Yingjie Wang, Mariana Gama, Mustafa A. Mustafa, Geert
Deconinck, Xiaowei Huang
- Abstract summary: Power system load data can inadvertently reveal the daily routines of residential users, posing a risk to their property security.
We introduce a Markovian Switching-based distributed training framework, the convergence of which is substantiated through rigorous theoretical analysis.
Case studies employing real-world power system load data validate the efficacy of our proposed algorithm.
- Score: 11.185176107646956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of power systems, the increasing involvement of residential
users in load forecasting applications has heightened concerns about data
privacy. Specifically, the load data can inadvertently reveal the daily
routines of residential users, thereby posing a risk to their property
security. While federated learning (FL) has been employed to safeguard user
privacy by enabling model training without the exchange of raw data, these FL
models have shown vulnerabilities to emerging attack techniques, such as Deep
Leakage from Gradients and poisoning attacks. To counteract these, we initially
employ a Secure-Aggregation (SecAgg) algorithm that leverages multiparty
computation cryptographic techniques to mitigate the risk of gradient leakage.
However, the introduction of SecAgg necessitates the deployment of additional
sub-center servers for executing the multiparty computation protocol, thereby
escalating computational complexity and reducing system robustness, especially
in scenarios where one or more sub-centers are unavailable. To address these
challenges, we introduce a Markovian Switching-based distributed training
framework, the convergence of which is substantiated through rigorous
theoretical analysis. The Distributed Markovian Switching (DMS) topology shows
strong robustness towards the poisoning attacks as well. Case studies employing
real-world power system load data validate the efficacy of our proposed
algorithm. It not only significantly minimizes communication complexity but
also maintains accuracy levels comparable to traditional FL methods, thereby
enhancing the scalability of our load forecasting algorithm.
Related papers
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - Homomorphic Encryption-Enabled Federated Learning for Privacy-Preserving Intrusion Detection in Resource-Constrained IoV Networks [20.864048794953664]
This paper proposes a novel framework to address the data privacy issue for Federated Learning (FL)-based Intrusion Detection Systems (IDSs) in Internet-of-Vehicles (IoVs) with limited computational resources.
We first propose a highly-effective framework using homomorphic encryption to secure data that requires offloading to a centralized server for processing.
We develop an effective training algorithm tailored to handle the challenges of FL-based systems with encrypted data.
arXiv Detail & Related papers (2024-07-26T04:19:37Z) - Decentralized Federated Anomaly Detection in Smart Grids: A P2P Gossip Approach [0.44328715570014865]
This paper introduces a novel decentralized federated anomaly detection scheme based on two main gossip protocols namely Random Walk and Epidemic.
Our approach yields a notable 35% improvement in training time compared to conventional Federated Learning.
arXiv Detail & Related papers (2024-07-20T10:45:06Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
Federated learning (FL) has recently gained significant momentum due to its potential to leverage large-scale distributed user data.
The transmitted model updates can potentially leak sensitive user information, and the lack of central control of the local training process leaves the global model susceptible to malicious manipulations on model updates.
We develop a general framework PriRoAgg, utilizing Lagrange coded computing and distributed zero-knowledge proof, to execute a wide range of robust aggregation algorithms while satisfying aggregated privacy.
arXiv Detail & Related papers (2024-07-12T03:18:08Z) - Fed-Credit: Robust Federated Learning with Credibility Management [18.349127735378048]
Federated Learning (FL) is an emerging machine learning approach enabling model training on decentralized devices or data sources.
We propose a robust FL approach based on the credibility management scheme, called Fed-Credit.
The results exhibit superior accuracy and resilience against adversarial attacks, all while maintaining comparatively low computational complexity.
arXiv Detail & Related papers (2024-05-20T03:35:13Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
This paper introduces an advanced approach for fortifying Federated Learning (FL) systems against label-flipping attacks.
We propose a consensus-based verification process integrated with an adaptive thresholding mechanism.
Our results indicate a significant mitigation of label-flipping attacks, bolstering the FL system's resilience.
arXiv Detail & Related papers (2024-03-05T20:54:56Z) - A Secure Federated Learning Framework for Residential Short Term Load
Forecasting [1.1254693939127909]
Federated Learning (FL) is a machine learning alternative which enables collaborative learning of a model without exposing private raw data for short term load forecasting.
Standard FL is still vulnerable to an intractable cyber threat known as Byzantine attack carried out by faulty and/or malicious clients.
We develop a state-of-the-art differentially private secured FL-based framework that ensures the privacy of the individual smart meter's data while protect the security of FL models and architecture.
arXiv Detail & Related papers (2022-09-29T04:36:16Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
We propose a privacy-preserving machine learning technique named Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction.
FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism.
It is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models.
arXiv Detail & Related papers (2020-03-19T13:07:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.