論文の概要: Empowering Few-Shot Relation Extraction with The Integration of Traditional RE Methods and Large Language Models
- arxiv url: http://arxiv.org/abs/2407.08967v1
- Date: Fri, 12 Jul 2024 03:31:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 00:56:38.753550
- Title: Empowering Few-Shot Relation Extraction with The Integration of Traditional RE Methods and Large Language Models
- Title(参考訳): 従来のRE手法と大規模言語モデルの統合によるFew-Shot関係抽出
- Authors: Ye Liu, Kai Zhang, Aoran Gan, Linan Yue, Feng Hu, Qi Liu, Enhong Chen,
- Abstract要約: Few-Shot Relation extract (FSRE)は自然言語処理(NLP)の研究者にアピールする
大規模言語モデル(LLM)の近年の出現により、多くの研究者が文脈学習(ICL)を通じてFSREを探求している。
- 参考スコア(独自算出の注目度): 48.846159555253834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-Shot Relation Extraction (FSRE), a subtask of Relation Extraction (RE) that utilizes limited training instances, appeals to more researchers in Natural Language Processing (NLP) due to its capability to extract textual information in extremely low-resource scenarios. The primary methodologies employed for FSRE have been fine-tuning or prompt tuning techniques based on Pre-trained Language Models (PLMs). Recently, the emergence of Large Language Models (LLMs) has prompted numerous researchers to explore FSRE through In-Context Learning (ICL). However, there are substantial limitations associated with methods based on either traditional RE models or LLMs. Traditional RE models are hampered by a lack of necessary prior knowledge, while LLMs fall short in their task-specific capabilities for RE. To address these shortcomings, we propose a Dual-System Augmented Relation Extractor (DSARE), which synergistically combines traditional RE models with LLMs. Specifically, DSARE innovatively injects the prior knowledge of LLMs into traditional RE models, and conversely enhances LLMs' task-specific aptitude for RE through relation extraction augmentation. Moreover, an Integrated Prediction module is employed to jointly consider these two respective predictions and derive the final results. Extensive experiments demonstrate the efficacy of our proposed method.
- Abstract(参考訳): Few-Shot Relation extract (FSRE)は、限られたトレーニングインスタンスを利用するリレーショナル抽出(RE)のサブタスクであり、非常に低リソースのシナリオでテキスト情報を抽出する能力により、自然言語処理(NLP)の研究者にアピールする。
FSREの主要な手法は、事前学習言語モデル(PLM)に基づく微調整または即時チューニング技術である。
近年,大規模言語モデル (LLM) の出現により,多くの研究者が文脈学習 (ICL) を通じてFSREを探求している。
しかし、従来のREモデルやLLMに基づいたメソッドには、かなりの制限がある。
従来のREモデルは、必要な事前知識の欠如によって妨げられ、一方LLMは、REのタスク固有の能力に不足しています。
これらの欠点に対処するため,従来のREモデルとLLMを相乗的に組み合わせたデュアルシステム拡張関係エクストラクタ(DSARE)を提案する。
具体的には、DSARE は従来の RE モデルに LLM の以前の知識を革新的に注入し、関係抽出による RE に対する LLM のタスク固有の適性を向上させる。
さらに、統合予測モジュールを用いて、これらの2つの予測を共同で検討し、最終的な結果を導出する。
大規模実験により提案手法の有効性が示された。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Efficient Reinforcement Learning with Large Language Model Priors [18.72288751305885]
大規模言語モデル(LLM)は、最近、強力な汎用ツールとして登場した。
本稿では,従来の行動分布としてLLMを扱い,それらをRLフレームワークに統合することを提案する。
LLMに基づくアクションの事前処理を取り入れることで、探索と複雑性の最適化が大幅に削減されることを示す。
論文 参考訳(メタデータ) (2024-10-10T13:54:11Z) - Unleashing the Power of Large Language Models in Zero-shot Relation Extraction via Self-Prompting [21.04933334040135]
本稿では,大規模言語モデルに組み込まれたRE知識を十分に活用する新しい手法であるSelf-Promptingフレームワークを紹介する。
我々のフレームワークは3段階の多様性アプローチを用いてLSMを誘導し、スクラッチから特定の関係をカプセル化する複数の合成サンプルを生成する。
ベンチマークデータセットを用いた実験により,既存のLCMベースのゼロショットRE法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-10-02T01:12:54Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - Relation Extraction with Fine-Tuned Large Language Models in Retrieval Augmented Generation Frameworks [0.0]
関係抽出(RE)は、構造化されていないデータを知識グラフ(KG)のような構造化形式に変換するために重要である
プレトレーニング言語モデル(PLM)を活用した最近の研究は、この分野で大きな成功を収めている。
本研究では、微調整LDMの性能と、Retrieval Augmented-based (RAG) REアプローチへの統合について検討する。
論文 参考訳(メタデータ) (2024-06-20T21:27:57Z) - SLMRec: Empowering Small Language Models for Sequential Recommendation [38.51895517016953]
シーケンシャルレコメンデーションタスクでは、過去のインタラクションを考慮して、ユーザが対話する可能性のある次の項目を予測する。
最近の研究は、LCMがシーケンシャルレコメンデーションシステムに与える影響を実証している。
LLM の巨大なサイズのため、現実のプラットフォームに LLM ベースのモデルを適用するのは非効率で実用的ではない。
論文 参考訳(メタデータ) (2024-05-28T07:12:06Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - Recall, Retrieve and Reason: Towards Better In-Context Relation Extraction [11.535892987373947]
関係抽出(RE)は、テキストで言及されたエンティティ間の関係を特定することを目的としている。
大規模言語モデル(LLM)は、様々なタスクにおいて、コンテキスト内学習能力を印象的に示している。
LLMは、ほとんどの教師付き細調整RE法と比較して性能が劣る。
論文 参考訳(メタデータ) (2024-04-27T07:12:52Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
本稿では,知識グラフに基づくリトロフィッティング(KGR)を提案する。
実験により,実QAベンチマークにおいて,KGRはLLMの性能を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-11-22T11:08:38Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
大規模事前学習型言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて例外的な性能を示した。
しかし、これらのモデルの巨大なサイズは、現実世界のアプリケーションに展開する上で大きな課題をもたらします。
本稿では,LLMの知識を極めて小規模なモデルに効果的に伝達するRetrieval-based Knowledge Transfer (RetriKT)と呼ばれる新しい圧縮パラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-24T07:58:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。