Optimization of DNN-based speaker verification model through efficient quantization technique
- URL: http://arxiv.org/abs/2407.08991v1
- Date: Fri, 12 Jul 2024 05:03:10 GMT
- Title: Optimization of DNN-based speaker verification model through efficient quantization technique
- Authors: Yeona Hong, Woo-Jin Chung, Hong-Goo Kang,
- Abstract summary: Quantization of deep models offers a means to reduce both computational and memory expenses.
Our research proposes an optimization framework for the quantization of the speaker verification model.
- Score: 15.250677730668466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Deep Neural Networks (DNNs) rapidly advance in various fields, including speech verification, they typically involve high computational costs and substantial memory consumption, which can be challenging to manage on mobile systems. Quantization of deep models offers a means to reduce both computational and memory expenses. Our research proposes an optimization framework for the quantization of the speaker verification model. By analyzing performance changes and model size reductions in each layer of a pre-trained speaker verification model, we have effectively minimized performance degradation while significantly reducing the model size. Our quantization algorithm is the first attempt to maintain the performance of the state-of-the-art pre-trained speaker verification model, ECAPATDNN, while significantly compressing its model size. Overall, our quantization approach resulted in reducing the model size by half, with an increase in EER limited to 0.07%.
Related papers
- QT-DoG: Quantization-aware Training for Domain Generalization [58.439816306817306]
We propose Quantization-aware Training for Domain Generalization (QT-DoG)
QT-DoG exploits quantization as an implicit regularizer by inducing noise in model weights.
We demonstrate that QT-DoG generalizes across various datasets, architectures, and quantization algorithms.
arXiv Detail & Related papers (2024-10-08T13:21:48Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
In this work, we first explore the computational redundancy part of the network.
We then prune the redundancy blocks of the model and maintain the network performance.
Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part.
arXiv Detail & Related papers (2023-12-24T15:37:47Z) - Zero-Shot Sharpness-Aware Quantization for Pre-trained Language Models [88.80146574509195]
Quantization is a promising approach for reducing memory overhead and accelerating inference.
We propose a novel-aware quantization (ZSAQ) framework for the zero-shot quantization of various PLMs.
arXiv Detail & Related papers (2023-10-20T07:09:56Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
Large Language Models (LLMs) have achieved state-of-the-art performance across various language tasks but pose challenges for practical deployment.
We propose an efficient weight-only quantization method that reduces memory consumption and accelerates inference for LLMs.
We evaluate our approach on large-scale open source models such as OPT-175B and internal MoE models, showcasing minimal accuracy loss while achieving up to 3.65 times higher throughput.
arXiv Detail & Related papers (2023-08-16T23:57:41Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - Quantized Adaptive Subgradient Algorithms and Their Applications [39.103587572626026]
We propose quantized composite mirror descent adaptive subgradient (QCMD adagrad) and quantized regularized dual average adaptive subgradient (QRDA adagrad) for distributed training.
A quantized gradient-based adaptive learning rate matrix is constructed to achieve a balance between communication costs, accuracy, and model sparsity.
arXiv Detail & Related papers (2022-08-11T04:04:03Z) - Mixed-Precision Inference Quantization: Radically Towards Faster
inference speed, Lower Storage requirement, and Lower Loss [4.877532217193618]
Existing quantization techniques rely heavily on experience and "fine-tuning" skills.
This study provides a methodology for acquiring a mixed-precise quantization model with a lower loss than the full precision model.
In particular, we will demonstrate that neural networks with massive identity mappings are resistant to the quantization method.
arXiv Detail & Related papers (2022-07-20T10:55:34Z) - BiTAT: Neural Network Binarization with Task-dependent Aggregated
Transformation [116.26521375592759]
Quantization aims to transform high-precision weights and activations of a given neural network into low-precision weights/activations for reduced memory usage and computation.
Extreme quantization (1-bit weight/1-bit activations) of compactly-designed backbone architectures results in severe performance degeneration.
This paper proposes a novel Quantization-Aware Training (QAT) method that can effectively alleviate performance degeneration.
arXiv Detail & Related papers (2022-07-04T13:25:49Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z) - VecQ: Minimal Loss DNN Model Compression With Vectorized Weight
Quantization [19.66522714831141]
We develop a new quantization solution called VecQ, which can guarantee minimal direct quantization loss and better model accuracy.
In addition, in order to up the proposed quantization process during training, we accelerate the quantization process with a parameterized estimation and probability-based calculation.
arXiv Detail & Related papers (2020-05-18T07:38:44Z) - SQWA: Stochastic Quantized Weight Averaging for Improving the
Generalization Capability of Low-Precision Deep Neural Networks [29.187848543158992]
We present a new quantized neural network optimization approach, quantized weight averaging (SQWA)
The proposed approach includes floating-point model training, direct quantization of weights, capturing multiple low-precision models, averaging the captured models, and fine-tuning it with low-learning rates.
With SQWA training, we achieved state-of-the-art results for 2-bit QDNNs on CIFAR-100 and ImageNet datasets.
arXiv Detail & Related papers (2020-02-02T07:02:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.