Test-Time Model Adaptation for Quantized Neural Networks
- URL: http://arxiv.org/abs/2508.02180v1
- Date: Mon, 04 Aug 2025 08:24:19 GMT
- Title: Test-Time Model Adaptation for Quantized Neural Networks
- Authors: Zeshuai Deng, Guohao Chen, Shuaicheng Niu, Hui Luo, Shuhai Zhang, Yifan Yang, Renjie Chen, Wei Luo, Mingkui Tan,
- Abstract summary: Quantized models often suffer from severe performance degradation in dynamic environments with potential domain shifts.<n>Test-time adaptation (TTA) has emerged as an effective solution by enabling models to learn adaptively from test data.<n>We propose a continual zeroth-order adaptation (ZOA) framework that enables efficient model adaptation using only two forward passes.
- Score: 37.84294929199108
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantizing deep models prior to deployment is a widely adopted technique to speed up inference for various real-time applications, such as autonomous driving. However, quantized models often suffer from severe performance degradation in dynamic environments with potential domain shifts and this degradation is significantly more pronounced compared with their full-precision counterparts, as shown by our theoretical and empirical illustrations. To address the domain shift problem, test-time adaptation (TTA) has emerged as an effective solution by enabling models to learn adaptively from test data. Unfortunately, existing TTA methods are often impractical for quantized models as they typically rely on gradient backpropagation--an operation that is unsupported on quantized models due to vanishing gradients, as well as memory and latency constraints. In this paper, we focus on TTA for quantized models to improve their robustness and generalization ability efficiently. We propose a continual zeroth-order adaptation (ZOA) framework that enables efficient model adaptation using only two forward passes, eliminating the computational burden of existing methods. Moreover, we propose a domain knowledge management scheme to store and reuse different domain knowledge with negligible memory consumption, reducing the interference of different domain knowledge and fostering the knowledge accumulation during long-term adaptation. Experimental results on three classical architectures, including quantized transformer-based and CNN-based models, demonstrate the superiority of our methods for quantized model adaptation. On the quantized W6A6 ViT-B model, our ZOA is able to achieve a 5.0\% improvement over the state-of-the-art FOA on ImageNet-C dataset. The source code is available at https://github.com/DengZeshuai/ZOA.
Related papers
- Enhancing material behavior discovery using embedding-oriented Physically-Guided Neural Networks with Internal Variables [0.0]
Physically Guided Neural Networks with Internal Variables are SciML tools that use only observable data for training and unravel internal state relations.<n>Despite their potential, these models face challenges in scalability when applied to high-dimensional data such as fine-grid spatial fields or time-evolving systems.<n>We propose some enhancements to the PGNNIV framework that address these scalability limitations through reduced-order modeling techniques.
arXiv Detail & Related papers (2025-08-01T12:33:21Z) - Improving Batch Normalization with TTA for Robust Object Detection in Self-Driving [26.038699227233227]
This paper proposes two new robust methods to improve the Batch Normalization with TTA for object detection in autonomous driving.<n>We introduce a LearnableBN layer based on Generalized-search Entropy Minimization (GSEM) method.<n>We propose a new semantic-consistency based dual-stage-adaptation strategy, which encourages the model to iteratively search for the optimal solution.
arXiv Detail & Related papers (2024-11-28T01:59:34Z) - Optimization of DNN-based speaker verification model through efficient quantization technique [15.250677730668466]
Quantization of deep models offers a means to reduce both computational and memory expenses.
Our research proposes an optimization framework for the quantization of the speaker verification model.
arXiv Detail & Related papers (2024-07-12T05:03:10Z) - Test-Time Model Adaptation with Only Forward Passes [68.11784295706995]
Test-time adaptation has proven effective in adapting a given trained model to unseen test samples with potential distribution shifts.
We propose a test-time Forward-Optimization Adaptation (FOA) method.
FOA runs on quantized 8-bit ViT, outperforms gradient-based TENT on full-precision 32-bit ViT, and achieves an up to 24-fold memory reduction on ImageNet-C.
arXiv Detail & Related papers (2024-04-02T05:34:33Z) - Solving Inverse Problems with Model Mismatch using Untrained Neural Networks within Model-based Architectures [14.551812310439004]
We introduce an untrained forward model residual block within the model-based architecture to match the data consistency in the measurement domain for each instance.
Our approach offers a unified solution that is less parameter-sensitive, requires no additional data, and enables simultaneous fitting of the forward model and reconstruction in a single pass.
arXiv Detail & Related papers (2024-03-07T19:02:13Z) - Fast-Slow Test-Time Adaptation for Online Vision-and-Language Navigation [67.18144414660681]
We propose a Fast-Slow Test-Time Adaptation (FSTTA) approach for online Vision-and-Language Navigation (VLN)
Our method obtains impressive performance gains on four popular benchmarks.
arXiv Detail & Related papers (2023-11-22T07:47:39Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Quantized Adaptive Subgradient Algorithms and Their Applications [39.103587572626026]
We propose quantized composite mirror descent adaptive subgradient (QCMD adagrad) and quantized regularized dual average adaptive subgradient (QRDA adagrad) for distributed training.
A quantized gradient-based adaptive learning rate matrix is constructed to achieve a balance between communication costs, accuracy, and model sparsity.
arXiv Detail & Related papers (2022-08-11T04:04:03Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
In data-rich domains such as vision, language, and speech, deep learning prevails to deliver high-performance task-specific models.
Deep learning in resource-limited domains still faces multiple challenges including (i) limited data, (ii) constrained model development cost, and (iii) lack of adequate pre-trained models for effective finetuning.
Model reprogramming enables resource-efficient cross-domain machine learning by repurposing a well-developed pre-trained model from a source domain to solve tasks in a target domain without model finetuning.
arXiv Detail & Related papers (2022-02-22T02:33:54Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.