Global Attention-Guided Dual-Domain Point Cloud Feature Learning for Classification and Segmentation
- URL: http://arxiv.org/abs/2407.08994v1
- Date: Fri, 12 Jul 2024 05:19:19 GMT
- Title: Global Attention-Guided Dual-Domain Point Cloud Feature Learning for Classification and Segmentation
- Authors: Zihao Li, Pan Gao, Kang You, Chuan Yan, Manoranjan Paul,
- Abstract summary: We propose a Global Attention-guided Dual-domain Feature Learning network (GAD) to address the above-mentioned issues.
We first devise the Contextual Position-enhanced Transformer (CPT) module, which is armed with an improved global attention mechanism.
Then, the Dual-domain K-nearest neighbor Feature Fusion (DKFF) is cascaded to conduct effective feature aggregation.
- Score: 21.421806351869552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous studies have demonstrated the effectiveness of point-based neural models on the point cloud analysis task. However, there remains a crucial issue on producing the efficient input embedding for raw point coordinates. Moreover, another issue lies in the limited efficiency of neighboring aggregations, which is a critical component in the network stem. In this paper, we propose a Global Attention-guided Dual-domain Feature Learning network (GAD) to address the above-mentioned issues. We first devise the Contextual Position-enhanced Transformer (CPT) module, which is armed with an improved global attention mechanism, to produce a global-aware input embedding that serves as the guidance to subsequent aggregations. Then, the Dual-domain K-nearest neighbor Feature Fusion (DKFF) is cascaded to conduct effective feature aggregation through novel dual-domain feature learning which appreciates both local geometric relations and long-distance semantic connections. Extensive experiments on multiple point cloud analysis tasks (e.g., classification, part segmentation, and scene semantic segmentation) demonstrate the superior performance of the proposed method and the efficacy of the devised modules.
Related papers
- Point Cloud Understanding via Attention-Driven Contrastive Learning [64.65145700121442]
Transformer-based models have advanced point cloud understanding by leveraging self-attention mechanisms.
PointACL is an attention-driven contrastive learning framework designed to address these limitations.
Our method employs an attention-driven dynamic masking strategy that guides the model to focus on under-attended regions.
arXiv Detail & Related papers (2024-11-22T05:41:00Z) - Asynchronous Feedback Network for Perceptual Point Cloud Quality Assessment [18.65004981045047]
We propose a novel asynchronous feedback network (AFNet) to deal with global and local feature.
AFNet employs a dual-branch structure to deal with global and local feature, simulating the left and right hemispheres of the human brain, and constructs a feedback module between them.
We conduct comprehensive experiments on three datasets and achieve superior performance over the state-of-the-art approaches on all of these datasets.
arXiv Detail & Related papers (2024-07-13T08:52:44Z) - Joint Learning for Scattered Point Cloud Understanding with Hierarchical Self-Distillation [34.26170741722835]
We propose an end-to-end architecture that compensates for and identifies partial point clouds on the fly.
hierarchical self-distillation (HSD) can be applied to arbitrary hierarchy-based point cloud methods.
arXiv Detail & Related papers (2023-12-28T08:51:04Z) - Adaptive Edge-to-Edge Interaction Learning for Point Cloud Analysis [118.30840667784206]
Key issue for point cloud data processing is extracting useful information from local regions.
Previous works ignore the relation between edges in local regions, which encodes the local shape information.
This paper proposes a novel Adaptive Edge-to-Edge Interaction Learning module.
arXiv Detail & Related papers (2022-11-20T07:10:14Z) - DecoupleNet: Decoupled Network for Domain Adaptive Semantic Segmentation [78.30720731968135]
Unsupervised domain adaptation in semantic segmentation has been raised to alleviate the reliance on expensive pixel-wise annotations.
We propose DecoupleNet that alleviates source domain overfitting and enables the final model to focus more on the segmentation task.
We also put forward Self-Discrimination (SD) and introduce an auxiliary classifier to learn more discriminative target domain features with pseudo labels.
arXiv Detail & Related papers (2022-07-20T15:47:34Z) - Exploiting Domain Transferability for Collaborative Inter-level Domain
Adaptive Object Detection [17.61278045720336]
Domain adaptation for object detection (DAOD) has recently drawn much attention owing to its capability of detecting target objects without any annotations.
Previous works focus on aligning features extracted from partial levels in a two-stage detector via adversarial training.
We introduce a novel framework for ProposalD with three proposed components: Multi-scale-aware Uncertainty Attention (MUA), Transferable Region Network (TRPN), and Dynamic Instance Sampling (DIS)
arXiv Detail & Related papers (2022-07-20T01:50:26Z) - Multi-scale Network with Attentional Multi-resolution Fusion for Point
Cloud Semantic Segmentation [2.964101313270572]
We present a comprehensive point cloud semantic segmentation network that aggregates both local and global multi-scale information.
We introduce an Angle Correlation Point Convolution module to effectively learn the local shapes of points.
Third, inspired by HRNet which has excellent performance on 2D image vision tasks, we build an HRNet customized for point cloud to learn global multi-scale context.
arXiv Detail & Related papers (2022-06-27T21:03:33Z) - PRA-Net: Point Relation-Aware Network for 3D Point Cloud Analysis [56.91758845045371]
We propose a novel framework named Point Relation-Aware Network (PRA-Net)
It is composed of an Intra-region Structure Learning (ISL) module and an Inter-region Relation Learning (IRL) module.
Experiments on several 3D benchmarks covering shape classification, keypoint estimation, and part segmentation have verified the effectiveness and the ability of PRA-Net.
arXiv Detail & Related papers (2021-12-09T13:24:43Z) - Background-Aware 3D Point Cloud Segmentationwith Dynamic Point Feature
Aggregation [12.093182949686781]
We propose a novel 3D point cloud learning network, referred to as Dynamic Point Feature Aggregation Network (DPFA-Net)
DPFA-Net has two variants for semantic segmentation and classification of 3D point clouds.
It achieves the state-of-the-art overall accuracy score for semantic segmentation on the S3DIS dataset.
arXiv Detail & Related papers (2021-11-14T05:46:05Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - Global Context-Aware Progressive Aggregation Network for Salient Object
Detection [117.943116761278]
We propose a novel network named GCPANet to integrate low-level appearance features, high-level semantic features, and global context features.
We show that the proposed approach outperforms the state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-03-02T04:26:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.