論文の概要: New Desiderata for Direct Preference Optimization
- arxiv url: http://arxiv.org/abs/2407.09072v1
- Date: Fri, 12 Jul 2024 07:52:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 00:17:04.549253
- Title: New Desiderata for Direct Preference Optimization
- Title(参考訳): 直接参照最適化のための新しいデシラタ
- Authors: Xiangkun Hu, Tong He, David Wipf,
- Abstract要約: 我々は,既存のDPO手法が事前学習した基準モデルと,人間の嗜好の実証的尺度とを補間する能力において,未解決の欠点を浮き彫りにする新たな評価基準を導入する。
我々の洞察は、これらの制限を確実に緩和する代替のDPOライクな損失を動機付けます。
- 参考スコア(独自算出の注目度): 19.324743346476417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models in the past have typically relied on some form of reinforcement learning with human feedback (RLHF) to better align model responses with human preferences. However, because of oft-observed instabilities when implementing these RLHF pipelines, various reparameterization techniques have recently been introduced to sidestep the need for separately learning an RL reward model. Instead, directly fine-tuning for human preferences is achieved via the minimization of a single closed-form training objective, a process originally referred to as direct preference optimization (DPO) and followed by several notable descendants. Although effective in certain real-world settings, we introduce new evaluation criteria that serve to highlight unresolved shortcomings in the ability of existing DPO methods to interpolate between a pre-trained reference model and empirical measures of human preferences, as well as unavoidable trade-offs in how low- and high-quality responses are regularized and constraints are handled. Our insights then motivate an alternative DPO-like loss that provably mitigates these limitations. Empirical results serve to corroborate notable aspects of our analyses.
- Abstract(参考訳): これまでの大きな言語モデルは、モデル応答と人間の嗜好をより良く整合させるために、人間からのフィードバック(RLHF)による強化学習のある種の形式に依存してきた。
しかし、これらのRLHFパイプラインを実装する際の不安定性のため、RL報酬モデルを個別に学習する必要性を助長するために、近年様々なパラメータ化技術が導入されている。
代わりに、人間の嗜好を直接微調整することは、単一のクローズドフォームトレーニング目標(元々は直接選好最適化(DPO)と呼ばれ、その後いくつかの顕著な子孫が続くプロセス)の最小化によって達成される。
実世界の特定の環境では有効であるが、既存のDPO手法が事前訓練された参照モデルと人間の嗜好の実証的尺度を補間する能力の未解決の欠点を浮き彫りにする新たな評価基準を導入する。
私たちの洞察は、これらの制限を確実に緩和する代替のDPOライクな損失を動機付けます。
経験的結果は、我々の分析の顕著な側面を裏付けるものである。
関連論文リスト
- Uncertainty-Penalized Direct Preference Optimization [52.387088396044206]
我々は、優先不確実性ペナル化スキームを導入し、DPOの悲観的な枠組みを開発する。
ペナル化は、不確実なサンプルの損失勾配を減衰させる損失の補正として機能する。
我々は,バニラDPOと比較して全体的な性能が向上し,高い不確実性選択/拒絶反応によるプロンプトの完成度も向上した。
論文 参考訳(メタデータ) (2024-10-26T14:24:37Z) - A Comprehensive Survey of Direct Preference Optimization: Datasets, Theories, Variants, and Applications [52.42860559005861]
DPO(Direct Preference Optimization)は、アライメントのための有望なアプローチとして登場した。
DPOの様々な進歩と固有の制限にもかかわらず、これらの側面の詳細なレビューは現在、文献に欠けている。
論文 参考訳(メタデータ) (2024-10-21T02:27:24Z) - Inverse-Q*: Token Level Reinforcement Learning for Aligning Large Language Models Without Preference Data [25.844968873581244]
Inverse-Q*はトークンレベルの強化学習を最適化することで従来のRL手法を超越する革新的なフレームワークである。
この結果から,Inverse-Q*は従来のRLHFアプローチに代わる実用的で堅牢な代替手段であることがわかった。
論文 参考訳(メタデータ) (2024-08-27T08:43:32Z) - The Hitchhiker's Guide to Human Alignment with *PO [43.4130314879284]
我々は,高次パラメータの変動に対して同時に頑健であるアルゴリズムの同定に焦点をあてる。
解析の結果,広範に採用されているDPO法は,品質が劣る長大な応答を連続的に生成することがわかった。
これらの結果から,DPOアルゴリズムであるLN-DPOの精度が向上し,品質を損なうことなく,より簡潔な応答が得られることが示唆された。
論文 参考訳(メタデータ) (2024-07-21T17:35:20Z) - Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback [58.049113055986375]
我々は、報酬モデルとポリシーをトレーニングするために、AIHF(Alignment with Integrated Human Feedback)と呼ばれる単一ステージアプローチを開発する。
提案した手法は、一般的なアライメントアルゴリズムに容易に還元し、活用できる、効率的なアルゴリズムの集合を認めている。
本研究では,LLMにおけるアライメント問題と,MuJoCoにおけるロボット制御問題を含む広範な実験により,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-06-11T01:20:53Z) - Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF [82.7679132059169]
人間のフィードバックから強化学習が言語モデルのアライメントのための中心的なツールとして登場した。
我々は、RLHFにおけるオンライン探索のための新しいアルゴリズム、Exploratory Preference Optimization (XPO)を提案する。
XPOは証明可能な最強の保証と有望な経験的パフォーマンスを享受しています。
論文 参考訳(メタデータ) (2024-05-31T17:39:06Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - Statistical Rejection Sampling Improves Preference Optimization [42.57245965632205]
提案手法は,リジェクションサンプリングを用いた最適ポリシーからのソース選好データに対する新しいアプローチを提案する。
また、嗜好モデルの観点から、SLiC(Sequence Likelihood)とDPO(Direct Preference Optimization)の両方で使用される損失関数を強化する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-13T01:07:25Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
本稿では,RLHFにおける報酬モデルの新たなパラメータ化について紹介する。
DPO(Direct Preference Optimization)と呼ばれる結果のアルゴリズムは、安定的で、性能が高く、計算的にも軽量である。
我々の実験は、DPOが人間の好みに合わせて微調整できるだけでなく、既存の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-29T17:57:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。