Salt & Pepper Heatmaps: Diffusion-informed Landmark Detection Strategy
- URL: http://arxiv.org/abs/2407.09192v1
- Date: Fri, 12 Jul 2024 11:50:39 GMT
- Title: Salt & Pepper Heatmaps: Diffusion-informed Landmark Detection Strategy
- Authors: Julian Wyatt, Irina Voiculescu,
- Abstract summary: Anatomical Landmark Detection is a process of identifying key areas of an image for clinical measurements.
A machine learning model predicts the locus of a landmark as a probability region represented by a heatmap.
We reformulate automatic Anatomical Landmark Detection as a precise generative modelling task, producing a few-hot pixel heatmap.
- Score: 6.276791657895805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anatomical Landmark Detection is the process of identifying key areas of an image for clinical measurements. Each landmark is a single ground truth point labelled by a clinician. A machine learning model predicts the locus of a landmark as a probability region represented by a heatmap. Diffusion models have increased in popularity for generative modelling due to their high quality sampling and mode coverage, leading to their adoption in medical image processing for semantic segmentation. Diffusion modelling can be further adapted to learn a distribution over landmarks. The stochastic nature of diffusion models captures fluctuations in the landmark prediction, which we leverage by blurring into meaningful probability regions. In this paper, we reformulate automatic Anatomical Landmark Detection as a precise generative modelling task, producing a few-hot pixel heatmap. Our method achieves state-of-the-art MRE and comparable SDR performance with existing work.
Related papers
- Synthetic Augmentation for Anatomical Landmark Localization using DDPMs [0.22499166814992436]
diffusion-based generative models have recently started to gain attention for their ability to generate high-quality synthetic images.
We propose a novel way to assess the quality of the generated images using a Markov Random Field (MRF) model for landmark matching and a Statistical Shape Model (SSM) to check landmark plausibility.
arXiv Detail & Related papers (2024-10-16T12:09:38Z) - FM-OSD: Foundation Model-Enabled One-Shot Detection of Anatomical Landmarks [44.54301473673582]
We propose the first foundation model-enabled one-shot landmark detection (FM-OSD) framework for accurate landmark detection in medical images.
By using solely a single template image, our method demonstrates significant superiority over strong state-of-the-art one-shot landmark detection methods.
arXiv Detail & Related papers (2024-07-07T15:37:02Z) - Introducing Shape Prior Module in Diffusion Model for Medical Image
Segmentation [7.7545714516743045]
We propose an end-to-end framework called VerseDiff-UNet, which leverages the denoising diffusion probabilistic model (DDPM)
Our approach integrates the diffusion model into a standard U-shaped architecture.
We evaluate our method on a single dataset of spine images acquired through X-ray imaging.
arXiv Detail & Related papers (2023-09-12T03:05:00Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
We present a weakly supervised method to generate a healthy version of a diseased image and then use it to obtain a pixel-wise anomaly map.
We employ a diffusion model trained on healthy samples and combine Denoising Diffusion Probabilistic Model (DDPM) and Denoising Implicit Model (DDIM) at each step of the sampling process.
arXiv Detail & Related papers (2023-08-03T21:56:50Z) - Probabilistic Modeling of Inter- and Intra-observer Variability in
Medical Image Segmentation [12.594098548008832]
We propose a novel model, called Probabilistic Inter-Observer and iNtra-Observer variation NetwOrk (Pionono)
It captures the labeling behavior of each rater with a multidimensional probability distribution to produce probabilistic segmentation predictions.
Experiments on real-world cancer segmentation datasets demonstrate the high accuracy and efficiency of Pionono.
arXiv Detail & Related papers (2023-07-21T07:29:38Z) - Learning Structure-Guided Diffusion Model for 2D Human Pose Estimation [71.24808323646167]
We propose textbfDiffusionPose, a new scheme for learning keypoints heatmaps by a neural network.
During training, the keypoints are diffused to random distribution by adding noises and the diffusion model learns to recover ground-truth heatmaps from noised heatmaps.
Experiments show the prowess of our scheme with improvements of 1.6, 1.2, and 1.2 mAP on widely-used COCO, CrowdPose, and AI Challenge datasets.
arXiv Detail & Related papers (2023-06-29T16:24:32Z) - Precise Facial Landmark Detection by Reference Heatmap Transformer [52.417964103227696]
We propose a novel Reference Heatmap Transformer (RHT) for more precise facial landmark detection.
The experimental results from challenging benchmark datasets demonstrate that our proposed method outperforms the state-of-the-art methods in the literature.
arXiv Detail & Related papers (2023-03-14T12:26:48Z) - Multi-Branch Deep Radial Basis Function Networks for Facial Emotion
Recognition [80.35852245488043]
We propose a CNN based architecture enhanced with multiple branches formed by radial basis function (RBF) units.
RBF units capture local patterns shared by similar instances using an intermediate representation.
We show it is the incorporation of local information what makes the proposed model competitive.
arXiv Detail & Related papers (2021-09-07T21:05:56Z) - CAMERAS: Enhanced Resolution And Sanity preserving Class Activation
Mapping for image saliency [61.40511574314069]
Backpropagation image saliency aims at explaining model predictions by estimating model-centric importance of individual pixels in the input.
We propose CAMERAS, a technique to compute high-fidelity backpropagation saliency maps without requiring any external priors.
arXiv Detail & Related papers (2021-06-20T08:20:56Z) - A Transfer Learning approach to Heatmap Regression for Action Unit
intensity estimation [50.261472059743845]
Action Units (AUs) are geometrically-based atomic facial muscle movements.
We propose a novel AU modelling problem that consists of jointly estimating their localisation and intensity.
A Heatmap models whether an AU occurs or not at a given spatial location.
arXiv Detail & Related papers (2020-04-14T16:51:13Z) - Attentive One-Dimensional Heatmap Regression for Facial Landmark
Detection and Tracking [73.35078496883125]
We propose a novel attentive one-dimensional heatmap regression method for facial landmark localization.
First, we predict two groups of 1D heatmaps to represent the marginal distributions of the x and y coordinates.
Second, a co-attention mechanism is adopted to model the inherent spatial patterns existing in x and y coordinates.
Third, based on the 1D heatmap structures, we propose a facial landmark detector capturing spatial patterns for landmark detection on an image.
arXiv Detail & Related papers (2020-04-05T06:51:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.